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Chapter 1

Overview and Summary

Broadly, these notes will first provide a quick warm-up for dynamic gen-

eral equilibrium models before we will discuss the two workhorses of modern

macroeconomics, the neoclassical growth model with infinitely lived con-

sumers and the Overlapping Generations (OLG) model. The focus of these

notes is as much on developing a coherent language for formulating dynamic

macroeconomic model and on the techniques to analyze them, as is it on

the application of these models for basic questions in economic growth and

business cycle research.

In chapter 2 I will first present a simple dynamic pure exchange econ-

omy with two infinitely lived consumers engaging in intertemporal trade. In

this model the connection between competitive equilibria and Pareto optimal

equilibria can be easily demonstrated. Furthermore it will be demonstrated

how this connection can exploited to compute equilibria by solving a partic-

ular social planners problem, an approach developed first by Negishi (1960)

and discussed nicely by Kehoe (1989). Furthermore I will show the equiva-

lence of equilibria in a market arrangement in which households trade dated

consumption goods at the beginning of time, and equilibria under a market

structure where trade takes place sequentially and in every period households

exchange the current period consumption good and a simple financial asset.

This baseline model with then enriched, in chapter 3, by production (and

simplified by dropping one of the two agents), to give rise to the neoclassical

growth model. This model will first be presented in discrete time to discuss

discrete-time dynamic programming techniques; both theoretical as well as

computational in nature. The main reference will be Stokey et al., chapters

2-4. On the substantive side, I will argue how this model can be mapped

1



2 CHAPTER 1. OVERVIEW AND SUMMARY

into the data and what it implies for economic growth in the short and in the

long run. On the methodological side I will give the general mathematical

treatment of discrete time dynamic programming in chapters ?? (where I

discuss the required mathematical concepts) and chapter 5 (where the main

general results in the theory of dynamic programming will be summarized).

In chapter 6 I will introduce models with risk. After setting up the appro-

priate notation I will first discuss a pure exchange version of the stochastic

model and show how this model (essentially a version of Lucas’ (1978) asset

pricing model) can be used to develop a simple theory of asset pricing. I will

then turn to a stochastic version of the model with production in order to

develop the Real Business Cycle (RBC) theory of business cycles. Cooley

and Prescott (1995) are a good reference for this application.

Chapter 7 presents a general discussion of the two welfare theorems

in economies with infinite-dimensional commodity spaces, as is typical for

macroeconomic applications in which the economy extends forever and thus

there are an (countably) infinite number of dated consumption goods being

traded. We will heavily draw on Stokey et al., chapter 15’s discussion of

Debreu (1954) for this purpose.

The next two topics are logical extensions of the preceding material. In

chapter 8 we discuss the OLG model, due to Samuelson (1958) and Diamond

(1965). The first main focus in this module will be the theoretical results

that distinguish the OLG model from the standard Arrow-Debreu model of

general equilibrium: in the OLG model equilibria may not be Pareto opti-

mal, fiat money may have positive value, for a given economy there may be

a continuum of equilibria (and the core of the economy may be empty). All

this could not happen in the standard Arrow-Debreu model. References that

explain these di↵erences in detail include Geanakoplos (1989) and Kehoe

(1989). Our discussion of these issues will largely consist of examples. One

reason to develop the OLG model was the uncomfortable assumption of in-

finitely lived agents in the standard neoclassical growth model. Barro (1974)

demonstrated under which conditions (operative bequest motives) an OLG

economy will be equivalent to an economy with infinitely lived consumers.

One main contribution of Barro was to provide a formal justification for the

assumption of infinite lives. As we will see this methodological contribution

has profound consequences for the macroeconomic e↵ects of government debt,

reviving the Ricardian Equivalence proposition. As a prelude we will briefly

discuss Diamond’s (1965) analysis of government debt in an OLG model.

In the final module of these notes, chapter 9, we will discuss the neoclassi-
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cal growth model in continuous time to develop continuous time optimization

techniques. After having learned the technique we will review the main devel-

opments in growth theory and see how the various growth models fare when

being contrasted with the main empirical findings from the Summers-Heston

panel data set. We will briefly discuss the Solow model and its empirical

implications (using the article by Mankiw et al. (1992) and Romer, chapter

2), then continue with the Ramsey model (Intriligator, chapter 14 and 16,

Blanchard and Fischer, chapter 2). In this model growth comes about by

introducing exogenous technological progress. We will then review the main

contributions of endogenous growth theory, first by discussing the early mod-

els based on externalities (Romer (1986), Lucas (1988)), then models that

explicitly try to model technological progress (Romer (1990).

1

1Previous versions of these notes contained a chapter on models with heterogeneous
households. This material has been merged into my manuscript An Introduction to
Macroeconomics with Household Heterogeneity and significantly expanded there.
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Chapter 2

A Simple Dynamic Economy

2.1 General Principles for Specifying a Model

An economic model consists of di↵erent types of entities that take decisions

subject to constraints. When writing down a model it is therefore crucial

to clearly state what the agents of the model are, which decisions they take,

what constraints they have and what information they possess when making

their decisions. Typically a model has (at most) three types of decision-

makers

1. Households: We have to specify households’ preferences over com-
modities and their endowments of these commodities. Households

are assumed to optimize their preferences over a constraint set that

specifies which combination of commodities a household can choose

from. This set usually depends on initial household endowments and

on market prices.

2. Firms: We have to specify the production technology available to

firms, describing how commodities (inputs) can be transformed into

other commodities (outputs). Firms are assumed to maximize (ex-

pected) profits, subject to their production plans being technologically

feasible.

3. Government: We have to specify what policy instruments (taxes,

money supply etc.) the government controls. When discussing govern-

ment policy from a positive point of view we will take government po-

lices as given (of course requiring the government budget constraint(s)

5



6 CHAPTER 2. A SIMPLE DYNAMIC ECONOMY

to be satisfied), when discussing government policy from a normative

point of view we will endow the government, as households and firms,

with an objective function. The government will then maximize this

objective function by choosing policy, subject to the policies satisfying

the government budget constraint(s)).

In addition to specifying preferences, endowments, technology and policy,

we have to specify what information agents possess when making decisions.

This will become clearer once we discuss models with risk. Finally we have

to be precise about how agents interact with each other. Most of economics

focuses on market interaction between agents; this will be also the case in this

course. Therefore we have to specify our equilibrium concept, by making

assumptions about how agents perceive their power to a↵ect market prices.

In this course we will focus on competitive equilibria, by assuming that all

agents in the model (apart from possibly the government) take market prices

as given and beyond their control when making their decisions. An alterna-

tive assumption would be to allow for market power of firms or households,

which induces strategic interactions between agents in the model. Equilib-

ria involving strategic interaction have to be analyzed using methods from

modern game theory.

To summarize, a description of any model in this course should always

contain the specification of the elements in bold letters: what commodities

are traded, preferences over and endowments of these commodities, tech-

nology, government policies, the information structure and the equilibrium

concept.

2.2 An Example Economy

Time is discrete and indexed by t = 0, 1, 2, . . . There are 2 individuals that

live forever in this pure exchange economy.

1
There are no firms, and the

government is absent as well. In each period the two agents consume a

nonstorable consumption good. Hence there are (countably) infinite number

of commodities, namely consumption in periods t = 0, 1, 2, . . .

1One may wonder how credible the assumption is that households take prices as given
in an economy with two households. To address this concern, let there be instead two
classes of households with equal size. Within each class, there are many households (if
you want to be really safe, a continuum) that are all identical and described as in the main
text. This economy has the same equilibria as the one described in the main text.



2.2. AN EXAMPLE ECONOMY 7

Definition 1 An allocation is a sequence (c1, c2) = {(c1t , c2t )}1t=0 of consump-
tion in each period for each individual.

Individuals have preferences over consumption allocations that can be

represented by the utility function

u(ci) =
1X

t=0

�t
ln(cit) (2.1)

with � 2 (0, 1).
This utility function satisfies some assumptions that we will often require

in this course. These are further discussed in the appendix to this chapter.

Note that both agents are assumed to have the same time discount factor �.
Agents have deterministic endowment streams ei = {eit}1t=0 of the con-

sumption goods given by

e1t =

⇢
2

0

if t is even
if t is odd

e2t =

⇢
0

2

if t is even
if t is odd

There is no risk in this model and both agents know their endowment pat-

tern perfectly in advance. All information is public, i.e. all agents know

everything. At period 0, before endowments are received and consumption

takes place, the two agents meet at a central market place and trade all

commodities, i.e. trade consumption for all future dates. Let pt denote the

price, in period 0, of one unit of consumption to be delivered in period t,
in terms of an abstract unit of account. We will see later that prices are

only determined up to a constant, so we can always normalize the price of

one commodity to 1 and make it the numeraire. Both agents are assumed

to behave competitively in that they take the sequence of prices {pt}1t=0 as

given and beyond their control when making their consumption decisions.

After trade has occurred agents possess pieces of paper (one may call

them contracts) stating

in period 212 I, agent 1, will deliver 0.25 units of the con-

sumption good to agent 2 (and will eat the remaining 1.75 units)

in period 2525 I, agent 1, will receive one unit of the consump-

tion good from agent 2 (and eat it).
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and so forth. In all future periods the only thing that happens is that

agents meet (at the market place again) and deliveries of the consumption

goods they agreed upon in period 0 takes place. Again, all trade takes place

in period 0 and agents are committed in future periods to what they have

agreed upon in period 0. There is perfect enforcement of these contracts

signed in period 0.2

2.2.1 Definition of Competitive Equilibrium

Given a sequence of prices {pt}1t=0 households solve the following optimization

problem

max

{cit}1t=0

1X

t=0

�t
ln(cit)

s.t.

1X

t=0

ptc
i
t 

1X

t=0

pte
i
t

cit � 0 for all t

Note that the budget constraint can be rewritten as

1X

t=0

pt(e
i
t � cit) � 0

The quantity eit � cit is the net trade of consumption of agent i for period t
which may be positive or negative.

For arbitrary prices {pt}1t=0 it may be the case that total consumption in

the economy desired by both agents, c1t + c2t at these prices does not equal

total endowments e1t + e2t ⌘ 2. We will call equilibrium a situation in which

prices are “right” in the sense that they induce agents to choose consumption

so that total consumption equals total endowment in each period. More

precisely, we have the following definition

Definition 2 A (competitive) Arrow-Debreu equilibrium are prices {p̂t}1t=0

and allocations ({ĉit}1t=0)i=1,2 such that

2A market structure in which agents trade only at period 0 will be called an Arrow-
Debreu market structure. We will show below that this market structure is equivalent to
a market structure in which trade in consumption and a particular asset takes place in
each period, a market structure that we will call sequential markets.
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1. Given {p̂t}1t=0, for i = 1, 2, {ĉit}1t=0 solves

max

{cit}1t=0

1X

t=0

�t
ln(cit) (2.2)

s.t.
1X

t=0

p̂tc
i
t 

1X

t=0

p̂te
i
t (2.3)

cit � 0 for all t (2.4)

2.
ĉ1t + ĉ2t = e1t + e2t for all t (2.5)

The elements of an equilibrium are allocations and prices. Note that we

do not allow free disposal of goods, as the market clearing condition is stated

as an equality.

3
Also note the ˆ’s in the appropriate places: the consumption

allocation has to satisfy the budget constraint (2.3) only at equilibrium prices

and it is the equilibrium consumption allocation that satisfies the goods

market clearing condition (2.5). Since in this course we will usually talk about

competitive equilibria, we will henceforth take the adjective “competitive”

as being understood.

2.2.2 Solving for the Equilibrium

For arbitrary prices {pt}1t=0 let’s first solve the consumer problem. Attach the

Lagrange multiplier �i to the budget constraint. The first order necessary

conditions for cit and cit+1 are then

�t

cit
= �ipt (2.6)

�t+1

cit+1

= �ipt+1 (2.7)

3Di↵erent people have di↵erent tastes as to whether one should allow free disposal or
not. Personally I think that if one wishes to allow free disposal, one should specify this as
part of technology (i.e. introduce a firm that has available a technology that uses positive
inputs to produce zero output; obviously for such a firm to be operative in equilibrium it
has to be the case that the price of the inputs are non-positive -think about goods that
are actually bads such as pollution).
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and hence

pt+1c
i
t+1 = �ptc

i
t for all t (2.8)

for i = 1, 2.
Equations (2.8), together with the budget constraint can be solved for the

optimal sequence of consumption of household i as a function of the infinite

sequence of prices (and of the endowments, of course)

cit = cit ({pt}1t=0)

In order to solve for the equilibrium prices {pt}1t=0 one then uses the goods

market clearing conditions (2.5)

c1t ({pt}1t=0) + c2t ({pt}1t=0) = e1t + e2t for all t

This is a system of infinite equations (for each t one) in an infinite number

of unknowns {pt}1t=0 which is in general hard to solve. Below we will dis-

cuss Negishi’s method that often proves helpful in solving for equilibria by

reducing the number of equations and unknowns to a smaller number.

For our particular simple example economy, however, we can solve for the

equilibrium directly. Sum (2.8) across agents to obtain

pt+1

�
c1t+1 + c2t+1

�
= �pt(c

1
t + c2t )

Using the goods market clearing condition we find that

pt+1

�
e1t+1 + e2t+1

�
= �pt(e

1
t + e2t )

and hence

pt+1 = �pt

and therefore equilibrium prices are of the form

pt = �tp0

Without loss of generality we can set p0 = 1, i.e. make consumption at period

0 the numeraire.

4
Then equilibrium prices have to satisfy

p̂t = �t

4Note that multiplying all prices by µ > 0 does not change the budget constraints of
agents, so that if prices {pt}1t=0 and allocations ({cit}1t=0)i21,2 are an AD equilibrium, so
are prices {µpt}1t=0 and allocations ({cit}1t=0)i=1,2
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so that, since � < 1, the period 0 price for period t consumption is lower

than the period 0 price for period 0 consumption. This fact just reflects the

impatience of both agents.

Using (2.8) we have that cit+1 = cit = ci0 for all t, i.e. consumption is

constant across time for both agents. This reflects the agent’s desire to

smooth consumption over time, a consequence of the strict concavity of the

period utility function. Now observe that the budget constraint of both

agents will hold with equality since agents’ period utility function is strictly

increasing. The left hand side of the budget constraint becomes

1X

t=0

p̂tc
i
t = ci0

1X

t=0

�t
=

ci0
1� �

for i = 1, 2.
The two agents di↵er only along one dimension: agent 1 is rich first,

which, given that prices are declining over time, is an advantage. For agent

1 the right hand side of the budget constraint becomes

1X

t=0

p̂te
1
t = 2

1X

t=0

�2t
=

2

1� �2

and for agent 2 it becomes

1X

t=0

p̂te
2
t = 2�

1X

t=0

�2t
=

2�

1� �2

The equilibrium allocation is then given by

ĉ1t = ĉ10 = (1� �)
2

1� �2
=

2

1 + �
> 1

ĉ2t = ĉ20 = (1� �)
2�

1� �2
=

2�

1 + �
< 1

which obviously satisfies

ĉ1t + ĉ2t = 2 = ê1t + ê2t for all t

Therefore the mere fact that the first agent is rich first makes her consume

more in every period. Note that there is substantial trade going on; in each
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even period the first agent delivers 2 � 2
1+�

=

2�
1+�

to the second agent and

in all odd periods the second agent delivers 2� 2�
1+�

to the first agent. Also

note that this trade is mutually beneficial, because without trade both agents

receive lifetime utility

u(eit) = �1
whereas with trade they obtain

u(ĉ1) =

1X

t=0

�t
ln

✓
2

1 + �

◆
=

ln

⇣
2

1+�

⌘

1� �
> 0

u(ĉ2) =

1X

t=0

�t
ln

✓
2�

1 + �

◆
=

ln

⇣
2�
1+�

⌘

1� �
< 0

In the next section we will show that not only are both agents better o↵ in the

competitive equilibrium than by just eating their endowment, but that, in a

sense to be made precise, the equilibrium consumption allocation is socially

optimal.

2.2.3 Pareto Optimality and the First Welfare Theo-
rem

In this section we will demonstrate that for this economy a competitive equi-

librium is socially optimal. To do this we first have to define what socially

optimal means. Our notion of optimality will be Pareto e�ciency (also some-

times referred to as Pareto optimality). Loosely speaking, an allocation is

Pareto e�cient if it is feasible and if there is no other feasible allocation that

makes no household worse o↵ and at least one household strictly better o↵.

Let us now make this precise.

Definition 3 An allocation {(c1t , c2t )}1t=0 is feasible if

1.
cit � 0 for all t, for i = 1, 2

2.
c1t + c2t = e1t + e2t for all t
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Feasibility requires that consumption is nonnegative and satisfies the re-

source constraint for all periods t = 0, 1, . . .

Definition 4 An allocation {(c1t , c2t )}1t=0 is Pareto e�cient if it is feasible
and if there is no other feasible allocation {(c̃1t , c̃2t )}1t=0 such that

u(c̃i) � u(ci) for both i = 1, 2

u(c̃i) > u(ci) for at least one i = 1, 2

Note that Pareto e�ciency has nothing to do with fairness in any sense:

an allocation in which agent 1 consumes everything in every period and

agent 2 starves is Pareto e�cient, since we can only make agent 2 better o↵

by making agent 1 worse o↵.

We now prove that every competitive equilibrium allocation for the econ-

omy described above is Pareto e�cient. Note that we have solved for one

equilibrium above; this does not rule out that there is more than one equi-

librium. One can, in fact, show that for this economy the competitive equi-

librium is unique, but we will not pursue this here.

Proposition 5 Let ({ĉit}1t=0)i=1,2 be a competitive equilibrium allocation. Then
({ĉit}1t=0)i=1,2 is Pareto e�cient.

Proof. The proof will be by contradiction; we will assume that ({ĉit}1t=0)i=1,2

is not Pareto e�cient and derive a contradiction to this assumption.

So suppose that ({ĉit}1t=0)i=1,2 is not Pareto e�cient. Then by the defini-

tion of Pareto e�ciency there exists another feasible allocation ({c̃it}1t=0)i=1,2

such that

u(c̃i) � u(ĉi) for both i = 1, 2

u(c̃i) > u(ĉi) for at least one i = 1, 2

Without loss of generality assume that the strict inequality holds for i = 1.
Step 1: Show that

1X

t=0

p̂tc̃
1
t >

1X

t=0

p̂tĉ
1
t

where {p̂t}1t=0 are the equilibrium prices associated with ({ĉit}1t=0)i=1,2. If not,
i.e. if

1X

t=0

p̂tc̃
1
t 

1X

t=0

p̂tĉ
1
t
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then for agent 1 the ˜-allocation is better (remember u(c̃1) > u(ĉ1) is as-

sumed) and not more expensive, which cannot be the case since {ĉ1t}1t=0 is

part of a competitive equilibrium, i.e. maximizes agent 1’s utility given equi-

librium prices. Hence

1X

t=0

p̂tc̃
1
t >

1X

t=0

p̂tĉ
1
t (2.9)

Step 2: Show that

1X

t=0

p̂tc̃
2
t �

1X

t=0

p̂tĉ
2
t

If not, then

1X

t=0

p̂tc̃
2
t <

1X

t=0

p̂tĉ
2
t

But then there exists a � > 0 such that

1X

t=0

p̂tc̃
2
t + � 

1X

t=0

p̂tĉ
2
t

Remember that we normalized p̂0 = 1. Now define a new allocation for agent

2, by

č2t = c̃2t for all t � 1

č20 = c̃20 + � for t = 0

Obviously

1X

t=0

p̂tč
2
t =

1X

t=0

p̂tc̃
2
t + � 

1X

t=0

p̂tĉ
2
t

and

u(č2) > u(c̃2) � u(ĉ2)

which can’t be the case since {ĉ2t}1t=0 is part of a competitive equilibrium, i.e.

maximizes agent 2’s utility given equilibrium prices. Hence

1X

t=0

p̂tc̃
2
t �

1X

t=0

p̂tĉ
2
t (2.10)
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Step 3: Now sum equations (2.9) and (2.10) to obtain

1X

t=0

p̂t(c̃
1
t + c̃2t ) >

1X

t=0

p̂t(ĉ
1
t + ĉ2t )

But since both allocations are feasible (the allocation ({ĉit}1t=0)i=1,2 because

it is an equilibrium allocation, the allocation ({c̃it}1t=0)i=1,2 by assumption)

we have that

c̃1t + c̃2t = e1t + e2t = ĉ1t + ĉ2t for all t

and thus

1X

t=0

p̂t(e
1
t + e2t ) >

1X

t=0

p̂t(e
1
t + e2t ),

our desired contradiction.

2.2.4 Negishi’s (1960) Method to Compute Equilibria

In the example economy considered in this section it was straightforward to

compute the competitive equilibrium by hand. This is usually not the case

for dynamic general equilibrium models. Now we describe a method to com-

pute equilibria for economies in which the welfare theorem(s) hold. The main

idea is to compute Pareto-optimal allocations by solving an appropriate so-

cial planners problem. This social planner problem is a simple optimization

problem which does not involve any prices (still infinite-dimensional, though)

and hence much easier to tackle in general than a full-blown equilibrium anal-

ysis which consists of several optimization problems (one for each consumer)

plus market clearing and involves allocations and prices. If the first welfare

theorem holds then we know that competitive equilibrium allocations are

Pareto optimal; by solving for all Pareto optimal allocations we have then

solved for all potential equilibrium allocations. Negishi’s method provides

an algorithm to compute all Pareto optimal allocations and to isolate those

who are in fact competitive equilibrium allocations.

We will repeatedly apply this trick in this course: solve a simple social

planners problem and use the welfare theorems to argue that we have solved

for the allocations of competitive equilibria. Then find equilibrium prices

that support these allocations. The news is even better: usually we can

read o↵ the prices as Lagrange multipliers from the appropriate constraints

of the social planners problem. In later parts of the course we will discuss
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economies in which the welfare theorems do not hold. We will see that these

economies are much harder to analyze exactly because there is no simple

optimization problem that completely characterizes the (set of) equilibria of

these economies.

Consider the following social planner problem

max

{(c1t ,c2t )}1t=0

↵1u(c1) + ↵2u(c2) (2.11)

= max

{(c1t ,c2t )}1t=0

1X

t=0

�t
⇥
↵1

ln(c1t ) + ↵2
ln(c2t )

⇤

s.t.

cit � 0 for all i, all t

c1t + c2t = e1t + e2t ⌘ 2 for all t

for a Pareto weights ↵i � 0. The social planner maximizes the weighted sum

of utilities of the two agents, subject to the allocation being feasible. The

weights ↵i
indicate how important agent i’s utility is to the planner. Note

that the solution to this problem will depend on the Pareto weights, i.e. the

optimal consumption choices are functions of ↵ = (↵1,↵2
)

{(c1t , c2t )}1t=0 = {(c1t (↵), c2t (↵))}1t=0

We have the following

Proposition 6 Any allocation {(c1t , c2t )}1t=0 that solves the solves the social
planners problem (2.11) for some vector of Pareto weights ↵ > 0 is Pareto
e�cient.

Proposition 7 Conversely, any Pareto e�cient allocation {(c1t , c2t )}1t=0 is
the solution to the social planners problem (2.11) for some vector of Pareto
weights ↵ � 0,↵ 6= 0.

Proof. Omitted (but a good exercise, or consult MasColell et al., propo-

sition 16.E.2). Note that the second proposition requires the lifetime utility

possibility set to be convex, which follows from the period utility function of

both households being strictly concave.

This proposition states that we can characterize the set of all Pareto

e�cient allocations by varying the ↵’s. As will become apparent below, all
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that matters are the relative weights ↵1/↵2, and we will demonstrate that, by

choosing a particular ↵1/↵2, the associated e�cient allocation for that vector

of welfare weights ↵ turns out to be the competitive equilibrium allocation.

Now let us solve the planners problem for arbitrary ↵ � 0.5 Attach

Lagrange multipliers

µt

2 to the resource constraints (and ignore the non-

negativity constraints on cit since they never bind, due to the period util-

ity function satisfying the Inada conditions). The reason why we divide the

Lagrange multipliers by 2 will become apparent in a moment.

The first order necessary conditions are

↵1�t

c1t
=

µt

2

↵2�t

c2t
=

µt

2

Combining yields

c1t
c2t

=

↵1

↵2
(2.12)

c1t =

↵1

↵2
c2t (2.13)

i.e. the ratio of consumption between the two agents equals the ratio of the

Pareto weights in every period t. A higher Pareto weight for agent 1 results

in this agent receiving more consumption in every period, relative to agent

2.
Using the resource constraint in conjunction with (2.13) yields

c1t + c2t = 2

↵1

↵2
c2t + c2t = 2

c2t = 2/(1 + ↵1/↵2
) = c2t (↵)

c1t = 2/(1 + ↵2/↵1
) = c1t (↵)

i.e. the social planner divides the total resources in every period according to

the Pareto weights. Note that the division is the same in every period, inde-

pendent of the agents’ endowments in that particular period. The Lagrange

5Note that for ↵i = 0 the solution to the problem is trivial. For ↵1 = 0 we have c

1
t = 0

and c

2
t = 2 and for ↵2 = 0 we have the reverse.
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multipliers are given by

µt = (↵1
+ ↵2

)�t
(2.14)

Note that if we wouldn’t have done the initial division by 2 we would have

to carry the

1
2 around from now on; the results below wouldn’t change at

all, though). Also, as it is clear from the above discussion what matter

for allocations are the relative Pareto weights, without loss of generality we

can normalize their sum to one, and henceforth ↵1
+ ↵2

= 1. The Lagrange

multipliers are then given by

µt = �t
(2.15)

Hence, and to summarize, for this economy the set of Pareto e�cient alloca-

tions is given by

PO = {{(c1t , c2t )}1t=0 : c
1
t = 2/(1+↵2/↵1

) and c2t = 2/(1+↵1/↵2
) for some ↵1/↵2 2 [0,1)}

How does this help us in finding the competitive equilibrium for this

economy? Starting from the set PO we would like to construct an equilib-

rium (and in fact, Negishi used the argument that follows to construct an

existence proof of equilibrium). Now consider the list of requirements that

equilibrium allocations have to satisfy. First, equilibrium allocations have

to satisfy market clearing. But every feasible allocation does so. The other

requirement is that the equilibrium allocations have to be optimal, subject

to not violating the household budget constraint at equilibrium prices. The

first order necessary conditions of the household maximization problem read

as

�t

cit
= �ipt

Compare this to the first order necessary conditions from the social planners

problem:

↵i�t

cit
=

µt

2

.

This suggests that if we were to construct an equilibrium with allocations

from the set PO, it will have prices given by pt = µt = �t. This is also

intuitive: the Lagrange multiplier µt measures how binding the resource con-

straint in period t is in the social optimum. It is thus a measure of scarcity.

But intuitively, this is exactly the role of a competitive equilibrium price pt,
namely to signal to households how scarce consumption in any given period t
is. Note that the close connection between Lagrange multipliers on resource
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constraints in a social planner problem and prices in competitive equilibrium

is not specific to this model, but rather emerges in general whenever the first

welfare theorem applies and thus equilibrium allocations are Pareto e�cient.

Now, if Pareto weights ↵i
and Lagrange multipliers of the budget con-

straints are related by �i =
1

2↵i the first order conditions from the competitive

equilibrium and from the social planner problem coincide. Recall that ↵i
de-

termines how much household i gets to consume in an e�cient allocation.

The Lagrange multiplier �i measures how tight the budget constraint is for

household i in a competitive equilibrium. Thus it is perhaps not surprising

that the determination of the “right” ↵ comes from assuring that an e�cient

allocation (c1t (↵), c
2
t (↵)), at the appropriate prices {pt} = {µt}, satisfies the

budget constraints of each household (which is the one remaining part of the

equilibrium requirements we have not checked yet).

To make this formal, define the transfer functions ti(↵), i = 1, 2 by

ti(↵) =
X

t

µt

⇥
cit(↵)� eit

⇤

The number ti(↵) is the amount of the numeraire good (we pick the period

0 consumption good) that agent i would need as transfer in order to be able

to a↵ord the Pareto e�cient allocation indexed by ↵ in a competitive equi-

librium with equilibrium prices {pt} = {µt}. Thus the “right” ↵ = (↵1,↵2
)

is the one that satisfies, for all i = 1, 2

ti(↵) = 0. (2.16)

Using the Lagrange multipliers in (2.15) prior to normalization we note that

ti(↵) =
X

t

µt

⇥
cit(↵)� eit

⇤
=

1X

t=0

(↵1
+ ↵2

)�t
⇥
cit(↵)� eit

⇤

and thus ti(✓↵) = ✓ti(↵) for any ✓ > 0, since cit(↵) only depends on ↵1/↵2.
That is, the ti as functions of the Pareto weights are homogeneous of degree

one. Thus equations (2.16) only pin down the desired ↵ up to a scalar

(whenever ti(↵) = 0 for all i, so will be ti(✓↵) = ✓ti(↵)) and it is indeed

innocuous so normalize ↵ such that (↵1
+↵2

) = 1. But then one may wonder

how both equations (2.16) can be satisfied simultaneously if we only have

one degree of freedom? Fortunately the transfer functions sum to zero for all
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↵, since

2X

i=1

ti(↵) =
2X

i=1

X

t

µt

⇥
cit(↵)� eit

⇤
=

X

t

µt

2X

i=1

⇥
cit(↵)� eit

⇤
= 0

where the last equality uses the resource constraint. Thus, e↵ectively we only

have one equation (say t1(↵) = 0) and one unknown ↵1/↵2
to solve.

6

Doing so yields

t1(↵) =

1X

t=0

(↵1
+ ↵2

)�t
⇥
c1t (↵)� e1t

⇤

=

1X

t=0

�t
⇥
2/(1 + ↵2/↵1

)� e1t
⇤

=

2

(1� �)(1 + ↵2/↵1
)

� 2

1� �2
= 0

and thus

1

1 + ↵2/↵1
=

1

1 + �

↵2/↵1
= �

and the corresponding consumption allocations are

c1t =

2

1 + ↵2/↵1
=

2

1 + �

c2t =

2

1 + ↵1/↵2
=

2�

1 + �

Hence we have solved for the equilibrium allocations; equilibrium prices

are given by the Lagrange multipliers µt = �t
(note that without the nor-

malization by

1
2 at the beginning we would have found the same allocations

and equilibrium prices pt =
�t

2 which, given that equilibrium prices are ho-

mogeneous of degree 0, is perfectly fine, too). To summarize, to compute

competitive equilibria using Negishi’s method one does the following

6More generally, with N di↵erent households there are N Pareto weights. With the
normalization

P
i ↵

i = 1 and the fact that
P

i t
i(↵) = 0 this yields a system of N � 1

equations in N � 1 unknowns (the relative Pareto weights ↵i
/↵

1).
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1. Solve the social planners problem for Pareto e�cient allocations in-

dexed by the Pareto weights ↵ = (↵1,↵2
).

2. Compute transfers, indexed by ↵, necessary to make the e�cient allo-

cation a↵ordable. As prices use Lagrange multipliers on the resource

constraints in the planners’ problem.

3. Find the normalized Pareto weight(s) ↵̂ that makes the transfer func-

tions 0.

4. The Pareto e�cient allocations corresponding to ↵̂ are equilibrium al-

locations; the supporting equilibrium prices are (multiples of) the La-

grange multipliers from the planning problem

Remember from above that to solve for the equilibrium directly in general

involves solving an infinite number of equations in an infinite number of

unknowns. The Negishi method reduces the computation of equilibrium to

a finite number of equations in a finite number of unknowns in step 3 above.

For an economy with two agents, it is just one equation in one unknown,

for an economy with N agents it is a system of N � 1 equations in N � 1

unknowns. This is why the Negishi method (and methods relying on solving

appropriate social planners problems in general) often significantly simplifies

solving for competitive equilibria.

2.2.5 Sequential Markets Equilibrium

The market structure of Arrow-Debreu equilibrium in which all agents meet

only once, at the beginning of time, to trade claims to future consumption

may seem empirically implausible. In this section we show that the same allo-

cations as in an Arrow-Debreu equilibrium would arise if we let agents trade

consumption and one-period bonds in each period. We will call a market

structure in which markets for consumption and assets open in each period

Sequential Markets and the corresponding equilibrium Sequential Markets

(SM) equilibrium.

7

Let rt+1 denote the interest rate on one period bonds from period t to

period t + 1. A one period bond is a promise (contract) to pay 1 unit of

7In the simple model we consider in this section the restriction of assets traded to one-
period riskless bonds is without loss of generality. In more complicated economies (e.g.
with risk) it would not be. We will come back to this issue in later chapters.
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the consumption good in period t + 1 in exchange for

1
1+rt+1

units of the

consumption good in period t. We can interpret qt ⌘ 1
1+rt+1

as the relative

price of one unit of the consumption good in period t+1 in terms of the period

t consumption good. Let ait+1 denote the amount of such bonds purchased by

agent i in period t and carried over to period t+1. If ait+1 < 0 we can interpret

this as the agent taking out a one-period loan at interest rate (between t and
t+ 1) given by rt+1. Household i’s budget constraint in period t reads as

cit +
ait+1

(1 + rt+1)
 eit + ait (2.17)

or

cit + qta
i
t+1  eit + ait

Agents start out their life with initial bond holdings ai0 (remember that period

0 bonds are claims to period 0 consumption). Mostly we will focus on the

situation in which ai0 = 0 for all i, but sometimes we want to start an agent

o↵ with initial wealth (ai0 > 0) or initial debt (ai0 < 0). Since there is no

government and only two agents in this economy the initial condition is

required to satisfy

P2
i=1 a

i
0 = 0.

We then have the following definition

Definition 8 A Sequential Markets equilibrium is allocations {�ĉit, âit+1

�
i=1,2

}1t=0,

interest rates {r̂t+1}1t=0 such that

1. For i = 1, 2, given interest rates {r̂t+1}1t=0 {ĉit, âit+1}1t=0 solves

max

{cit,ait+1}1t=0

1X

t=0

�t
ln(cit) (2.18)

s.t.

cit +
ait+1

(1 + r̂t+1)
 eit + ait (2.19)

cit � 0 for all t (2.20)

ait+1 � � ¯Ai
(2.21)
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2. For all t � 0

2X

i=1

ĉit =

2X

i=1

eit

2X

i=1

âit+1 = 0

The constraint (2.21) on borrowing is necessary to guarantee existence

of equilibrium. Suppose that agents would not face any constraint as to

how much they can borrow, i.e. suppose the constraint (2.21) were absent.

Suppose there would exist a SM-equilibrium {�ĉit, âit+1

�
i=1,2

}1t=1, {r̂t+1}1t=0.
Without constraint on borrowing agent i could always do better by setting

ci0 = ĉi0 +
"

1 + r̂1
cit = ĉit for all t > 0

ai1 = âi1 � "

ai2 = âi2 � (1 + r̂2)"

ait+1 = âit+1 �
tY

⌧=1

(1 + r̂⌧+1)"

i.e. by borrowing " > 0 more in period 0, consuming it and then rolling over

the additional debt forever, by borrowing more and more. Such a scheme

is often called a Ponzi scheme. Hence without a limit on borrowing no SM

equilibrium can exist because agents would run Ponzi schemes and augment

their consumption without bound. Note that the " > 0 in the above argument

was arbitrarily large.

In this section we are interested in specifying a borrowing limit that pre-

vents Ponzi schemes, yet is high enough so that households are never con-

strained in the amount they can borrow (by this we mean that a household,

knowing that it can not run a Ponzi scheme, would always find it optimal

to choose ait+1 > � ¯Ai
). In later chapters we will analyze economies in which

agents face borrowing constraints that are binding in certain situations. Not

only are SM equilibria for these economies quite di↵erent from the ones to

be studied here, but also the equivalence between SM equilibria and AD

equilibria will break down when the borrowing constraints are occasionally

binding.
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We are now ready to state the equivalence theorem relating AD equilibria

and SM equilibria. Assume that ai0 = 0 for all i = 1, 2. Furthermore assume

that the endowment stream {eit}1t=0 is bounded.

Proposition 9 Let allocations {(ĉit)i=1,2}1t=0 and prices {p̂t}1t=0 form an Arrow-
Debreu equilibrium with

p̂t+1

p̂t
 ⇠ < 1 for all t. (2.22)

Then there exist
�
¯Ai
�
i=1,2

and a corresponding sequential markets equilibrium

with allocations {�c̃it, ãit+1

�
i=1,2

}1t=0 and interest rates {r̃t+1}1t=0 such that

c̃it = ĉit for all i, all t

Reversely, let allocations {�ĉit, âit+1

�
i=1,2

}1t=0 and interest rates {r̂t+1}1t=0 form
a sequential markets equilibrium. Suppose that it satisfies

âit+1 > � ¯Ai for all i, all t

r̂t+1 � " > 0 for all t (2.23)

for some ". Then there exists a corresponding Arrow-Debreu equilibrium
{(c̃it)i=1,2}1t=0, {p̃t}1t=0 such that

ĉit = c̃it for all i, all t.

That is, the set of equilibrium allocations under the AD and SM market
structures coincide.8

Proof. We first show that any consumption allocation that satisfies the

sequence of SM budget constraints is also in the AD budget set (step 1).

From this in fairly directly follows that AD equilibria can be made into SM

equilibria. The only complication is that we need to make sure that we can

find a large enough borrowing limit

¯Ai
such that the asset holdings required

to implement the AD consumption allocation as a SM equilibrium do not

8The assumption on p̂t+1

p̂t
and on r̂t+1 can be completely relaxed if one introduces

borrowing constraints of slightly di↵erent form in the SM equilibrium to prevent Ponzi
schemes. See Wright (Journal of Economic Theory, 1987). They are required here since I
insisted on making the Ā

i a fixed number.
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violate the no Ponzi constraint. This is shown in step 2. Finally, in step 3

we argue that an SM equilibrium can be made into an AD equilibrium.

Step 1: The key to the proof is to show the equivalence of the budget

sets for the Arrow-Debreu and the sequential markets structure. This step

will then be used in the arguments below. Normalize p̂0 = 1 (as we can

always do) and relate equilibrium prices and interest rates by

1 + r̂t+1 =
p̂t
p̂t+1

(2.24)

Now look at the sequence of sequential markets budget constraints and as-

sume that they hold with equality (which they do in equilibrium since lifetime

utility is strictly increasing in each of the consumption goods)

ci0 +
ai1

1 + r̂1
= ei0 (2.25)

ci1 +
ai2

1 + r̂2
= ei1 + ai1 (2.26)

.

.

.

cit +
ait+1

1 + r̂t+1
= eit + ait (2.27)

Substituting for ai1 from (2.26) in (2.25) one gets

ci0 +
ci1

1 + r̂1
+

ai2
(1 + r̂1) (1 + r̂2)

= ei0 +
ei1

(1 + r̂1)

and, repeating this exercise, yields

9

TX

t=0

citQt
j=1(1 + r̂j)

+

aiT+1QT+1
j=1 (1 + r̂j)

=

TX

t=0

eitQt
j=1(1 + r̂j)

Now note that (using the normalization p̂0 = 1)

tY

j=1

(1 + r̂j) =
p̂0
p̂1

⇤ p̂1
p̂2

· · · ⇤ p̂t�1

p̂t
=

1

p̂t
(2.28)

9We define
0Y

j=1

(1 + r̂j) = 1
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Taking limits with respect to t on both sides gives, using (2.28)

1X

t=0

p̂tc
i
t + lim

T!1

aiT+1QT+1
j=1 (1 + r̂j)

=

1X

t=0

p̂te
i
t

Given our assumptions on the equilibrium interest rates in (2.23) we have

lim

T!1

aiT+1QT+1
j=1 (1 + r̂j)

� lim

T!1

� ¯Ai

QT+1
j=1 (1 + r̂j)

= 0 (2.29)

and since limT!1
QT+1

j=1 (1+r̂j) = 1 (due to the assumption that r̂t+1 � " > 0

for all t), we have

1X

t=0

p̂tc
i
t 

1X

t=0

p̂te
i
t.

Thus any allocation that satisfies the SM budget constraints and the no

Ponzi conditions satisfies the AD budget constraint when AD prices and SM

interest rates are related by (2.24).
Step 2: Now suppose we have an AD-equilibrium {(ĉit)i=1,2}1t=0, {p̂t}1t=0.

We want to show that there exist a SM equilibrium with same consumption

allocation, i.e.

c̃it = ĉit for all i, all t

Obviously {(c̃it)i=1,2}1t=0 satisfies market clearing. Define asset holdings as

ãit+1 =

1X

⌧=1

p̂t+⌧

�
ĉit+⌧ � eit+⌧

�

p̂t+1
. (2.30)

Note that the consumption and asset allocation so constructed satisfies the

SM budget constraints since, recalling 1 + r̃t+1 =

p̂t
p̂t+1

we have, plugging in

from (2.30):

ĉit +
1X

⌧=1

p̂t+⌧

�
ĉit+⌧ � eit+⌧

�

p̂t+1(1 + r̃t+1)
= eit +

1X

⌧=1

p̂t�1+⌧

�
ĉit�1+⌧ � eit�1+⌧

�

p̂t

ĉit +
1X

⌧=1

p̂t+⌧

�
ĉit+⌧ � eit+⌧

�

p̂t
= eit +

1X

⌧=0

p̂t+⌧

�
ĉit+⌧ � eit+⌧

�

p̂t

ĉit = eit +
p̂t (ĉit � eit)

p̂t
= ĉit.
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Next we show that we can find a borrowing limit

¯Ai
large enough so that the

no Ponzi condition is never violated with asset levels given by (2.30). Note
that (since by assumption

p̂t+⌧

p̂t+1
 ⇠⌧�1

) we have

ãit+1 � �
1X

⌧=1

p̂t+⌧eit+⌧

p̂t+1
� �

1X

⌧=1

⇠⌧�1eit+⌧ > �1 (2.31)

so that we can take

¯Ai
= 1 + sup

t

1X

⌧=1

⇠⌧�1eit+⌧ < 1 (2.32)

where the last inequality follows from the fact that ⇠ < 1 and the assumption

that the endowment stream is bounded.10 This borrowing limit

¯Ai
is so high

that agent i, knowing that she can’t run a Ponzi scheme, will never hit it.

10One way to deal with potentially growing endowment streams is to state the No Ponzi
condition as

lim
T!1

a

i
T+1QT+1

j=1 (1 + r̃j)
� 0.

This common way of stating the constraint involves equilibrium interest rates however
and thus can only be checked once the equilibrium has actually been found and thus I
did not want to introduce it as the benchmark No Ponzi condition. But it is helpful in
environments with growing endowments.
Note that equation (2.29) in the first step of the proof still holds and thus step 1 of

the proof goes through even with this No-Ponzi condition. The implied asset holdings in
equation (2.30) satisfy this No Ponzi condition even when endowments are growing at a
positive rate 1 + g since

lim
T!1

ã

i
t+1Qt+1

j=1(1 + r̃j)
= lim

T!1

P1
⌧=1

p̂t+⌧(ĉit+⌧�eit+⌧)
p̂t+1Qt+1

j=1(1 + r̃j)

= lim
T!1

1X

⌧=1

p̂t+⌧

�
ĉ

i
t+⌧ � e

i
t+⌧

� � � lim
t!1

1X

⌧=1

p̂t+⌧e
i
t+⌧

= � lim
t!1

p̂t+1e
i
t+1

1X

⌧=1

p̂t+⌧

p̂t+1
· e

i
t+⌧

e

i
t+1

� � lim
t!1

p̂t+1e
i
t+1

1X

⌧=1

[⇠(1 + g)]⌧�1

=
� limt!1 p̂t+1e

i
t+1

1� ⇠(1 + g)
= 0

as long as ⇠(1+g) < 1, that is, as long as prices fall faster than endowments grow (so that
limt!1 p̂t+1e

i
t+1 = 0), or equivalently, as long as interest rates are larger, than growth

rates r̃t+1 > g.
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It remains to argue that {(c̃it)i=1,2}1t=0 maximizes lifetime utility, subject

to the sequential markets budget constraints and the borrowing constraints

defined by

¯Ai
. Take any other allocation satisfying the SM budget con-

straints, at interest rates given by (2.24). In step 1. we showed that then

this allocation would also satisfy the AD budget constraint and thus could

have been chosen at AD equilibrium prices. If this alternative allocation

would yield higher lifetime utility than the allocation {c̃it = ĉit}1t=0 it would

have been chosen as part of an AD-equilibrium, which it wasn’t. Hence

{c̃it}1t=0 must be optimal within the set of allocations satisfying the SM bud-

get constraints at interest rates 1 + r̃t+1 =
p̂t

p̂t+1
.

Step 3: Now suppose {�ĉit, âit+1

�
i2I}1t=1 and {r̂t+1}1t=0 form a sequential

markets equilibrium satisfying

âit+1 > � ¯Ai
for all i, all t

r̂t+1 > 0 for all t

We want to show that there exists a corresponding Arrow-Debreu equilibrium

{(c̃it)i2I}1t=0, {p̃t}1t=0 with

ĉit = c̃it for all i, all t

Again obviously {(c̃it)i2I}1t=0 satisfies market clearing and, as shown in

step 1, the AD budget constraint. It remains to be shown that it maximizes

utility within the set of allocations satisfying the AD budget constraint, for

prices p̃0 = 1 and p̃t+1 =

p̃t
1+r̂t+1

. For any other allocation satisfying the AD

budget constraint we could construct asset holdings (from equation 2.30) such

that this allocation together with the asset holdings satisfies the SM-budget

constraints. The only complication is that in the SM household maximiza-

tion problem there is an additional constraint, the no-Ponzi constraints. Thus

the set over which we maximize in the AD case is larger, since the borrow-

ing constraints are absent in the AD formulation, and we need to rule out

that allocations that would violate the SM no Ponzi conditions are optimal

choices in the AD household problem, at the equilibrium prices. However,

by assumption the no Ponzi conditions are not binding at the SM equilib-

rium allocation, that is âit+1 > � ¯Ai
for all t. But for maximization problems

with concave objective and convex constraint set (such as the SM house-

hold maximization problem) if in the presence of the additional constraints

âit+1 � � ¯Ai
for a maximizing choice these constraints are not binding, then



2.2. AN EXAMPLE ECONOMY 29

this maximizer is also a maximizer of the relaxed problem with the con-

straint removed. Hence {c̃it}1t=0 is optimal for household i within the set of

allocations satisfying only the AD budget constraint.

This proposition shows that the sequential markets and the Arrow-Debreu

market structures lead to identical equilibria, provided that we choose the no

Ponzi conditions appropriately (e.g. equal to the ones in (2.32)) and that the

equilibrium interest rates are su�ciently high. Usually the analysis of our

economies is easier to carry out using AD language, but the SM formulation

has more empirical appeal. The preceding theorem shows that we can have

the best of both worlds.

For our example economy we find that the equilibrium interest rates in

the SM formulation are given by

1 + rt+1 =
pt
pt+1

=

1

�

or

rt+1 = r =
1

�
� 1 = ⇢

i.e. the interest rate is constant and equal to the subjective time discount

rate ⇢ =

1
�
� 1.

The proof of the proposition also gives us insights into how households use

financial markets in order to smooth consumpion. Consider the sequential

markets budget constraint of household 1, evaluated at cit =
2

1+�
and

1
1+rt+1

=

�:
2

1 + �
+ �a1t+1 = e1t + a1t .

Now take t = 0 and use the initial condition ai0 = 0 to obtain

2

1 + �
+ �a11 = 2

a11 =

2

1 + �

and thus from the market clearing condition

a21 = � 2

1 + �
.
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Repeating the same argument for t = 1 yields

2

1 + �
+ �a12 = 0 +

2

1 + �

a12 = a22 = 0,

and so forth. That is, in every even period the income rich household i = 1

uses part of her endowment to buy bonds (she is a saver), and in every odd

period she uses the proceeds of these bonds to finance her consumption in

these periods of low (zero!) endowment. Household i = 2 does exactly the

reverse, he borrows in even periods to consume despite having zero income,

and in odd periods repays the loan fully with part of his income and uses

the remaining part for consumption. This way, by making good use of the

bond market, both households achieve smooth consumption despite their

very non-smooth endowment profiles.

2.3 Appendix: Some Facts about Utility Func-
tions

The utility function

u(ci) =
1X

t=0

�t
ln(cit) (2.33)

described in the main text satisfies the following assumptions that we will

often require in our models.

2.3.1 Time Separability

The utility function in (2.33) has the property that total utility from a con-

sumption allocation ci equals the discounted sum of period (or instantaneous)

utility U(cit) = ln(cit). Period utility U(cit) at time t only depends on consump-

tion in period t and not on consumption in other periods. This formulation

rules out, among other things, habit persistence, where the period utility

from consumption cit would also depend on past consumption levels cit�⌧ , for
⌧ > 0.
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2.3.2 Time Discounting

The fact that � < 1 indicates that agents are impatient. The same amount

of consumption yields less utility if it comes at a later time in an agents’ life.

The parameter � is often referred to as (subjective) time discount factor.

The subjective time discount rate ⇢ is defined by � =

1
1+⇢

and is often, as

we have seen above, intimately related to the equilibrium interest rate in

the economy (because the interest rate is nothing else but the market time

discount rate).

2.3.3 Standard Properties of the Period Utility Func-
tion

The instantaneous utility function or felicity function U(c) = ln(c) is con-

tinuous, twice continuously di↵erentiable, strictly increasing (i.e. U 0
(c) > 0)

and strictly concave (i.e. U 00
(c) < 0) and satisfies the Inada conditions

lim

c&0
U 0

(c) = +1
lim

c%+1
U 0

(c) = 0

These assumptions imply that more consumption is always better, but an

additional unit of consumption yields less and less additional utility. The

Inada conditions indicate that the first unit of consumption yields a lot of

additional utility but that as consumption goes to infinity, an additional

unit is (almost) worthless. The Inada conditions will guarantee that an

agent always chooses ct 2 (0,1) for all t, and thus that corner solutions for

consumption, ct = 0, can be ignored in the analysis of our models.

2.3.4 Constant Relative Risk Aversion (CRRA) Util-
ity

The felicity function U(c) = ln(c) is a member of the class of Constant

Relative Risk Aversion (CRRA) utility functions. These functions have the

general form

U(c) =
c1�� � 1

1� �
(2.34)

where � � 0 is a parameter. For � ! 1, this utility function converges

to U(c) = ln(c), which can be easily shown taking the limit in (2.34) and
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applying l’Hopital’s rule. CRRA utility functions have a number of important

properties. First, they satisfy the properties in the previous subsection.

Constant Coe�cient of Relative Risk Aversion

Define as �(c) = �U 00(c)c
U 0(c) the (Arrow-Pratt) coe�cient of relative risk aver-

sion. Hence �(c) indicates a household’s attitude towards risk, with higher

�(c) representing higher risk aversion, in a quantitatively meaningful way.

The (relative) risk premium measures the household’s willingness to pay (and

thus reduce safe consumption c̄) to avoid a proportional consumption gamble

in which a household can win, but also lose, a fraction of c̄. See figure 2.3.4

for a depiction of the risk premium.

Arrow-Pratt’s theorem states that this risk premium is proportional (up

to a first order approximation) to the coe�cient of relative risk aversion �(c̄).
This coe�cient is thus a quantitative measure of the willingness to pay to

avoid consumption gambles. Typically this willingness depends on the level

of consumption c̄, but for a CRRA utility function it does not, in that �(c)
is constant for all c, and equal to the parameter �. For U(c) = ln(c) it is not
only constant, but equal to �(c) = � = 1. This explains the name of this

class of period utility functions.

Intertemporal Elasticity of Substitution

Define the intertemporal elasticity of substitution (IES) as iest(ct+1, ct) as

iest(ct+1, ct) = �


d
⇣

ct+1
ct

⌘

ct+1
ct

�

2

664

d

0

@
@u(c)
@ct+1
@u(c)
@ct

1

A

@u(c)
@ct+1
@u(c)
@ct

3

775

= �

2

66666664

d

0

@
@u(c)
@ct+1
@u(c)
@ct

1

A

d
⇣

ct+1
ct

⌘

@u(c)
@ct+1
@u(c)
@ct
ct+1
ct

3

77777775

�1

that is, as the inverse of the percentage change in the marginal rate of sub-

stitution between consumption at t and t + 1 in response to a percentage

change in the consumption ratio

ct+1

ct
. For the CRRA utility function note

that

@u(c)
@ct+1

@u(c)
@ct

= MRS(ct+1, ct) = �

✓
ct+1

ct

◆��
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Figure 2.1: Illustration of Risk Aversion
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and thus

iest(ct+1, ct) = �

2

6664

���
⇣

ct+1

ct

⌘���1

�
⇣

ct+1
ct

⌘��

ct+1
ct

3

7775

�1

=

1

�

and the intertemporal elasticity of substitution is constant, independent of

the level or growth rate of consumption, and equal to 1/�. A simple plot of

the indi↵erence map should convince you that the IES measures the curvature

of the utility function. If � = 0 consumption in two adjacent periods are

perfect substitutes and the IES equals ies = 1. If � ! 1 the utility function

converges to a Leontie↵ utility function, consumption in adjacent periods are

prefect complements and ies = 0.
The IES also has a nice behavioral interpretation. From the first order

conditions of the household problem we obtain

@u(c)
@ct+1

@u(c)
@ct

=

pt+1

pt
=

1

1 + rt+1
(2.35)

and thus the IES can alternatively be written as (in fact, some economists

define the IES that way)

iest(ct+1, ct) = �


d
⇣

ct+1
ct

⌘

ct+1
ct

�

2

664

d

0

@
@u(c)
@ct+1
@u(c)
@ct

1

A

@u(c)
@ct+1
@u(c)
@ct

3

775

= �


d
⇣

ct+1
ct

⌘

ct+1
ct

�


d
⇣

1
1+rt+1

⌘

1
1+rt+1

�

that is, the IES measures the percentage change in the consumption growth

rate in response to a percentage change in the gross real interest rate, the

intertemporal price of consumption.

Note that for the CRRA utility function the Euler equation reads as

(1 + rt+1)�

✓
ct+1

ct

◆��

= 1.

Taking logs on both sides and rearranging one obtains

ln(1 + rt+1) + log(�) = � [ln(ct+1)� ln(ct)]
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or

ln(ct+1)� ln(ct) =
1

�
ln(�) +

1

�
ln(1 + rt+1). (2.36)

This equation forms the basis of all estimates of the IES; with time series data

on consumption growth and real interest rates the IES

1
�
can be estimated

from a regression of the former on the later.

11

Note that with CRRA utility the attitude of a household towards risk

(atemporal consumption gambles) measured by risk aversion � and the atti-

tude towards consumption smoothing over time measured by the intertempo-

ral elasticity of substitution 1/� are determined by the same parameter, and

varying risk aversion necessarily implies varying the IES as well. In many

applications, and especially in consumption-based asset pricing theory this

turns out to be an undesirable restriction. A generalization of CRRA utility

by Epstein and Zin (1989, 1991(often also called recursive utility) introduces

a (time non-separable) utility function in which two parameters govern risk

aversion and intertemporal elasticity of substitution separately.

2.3.5 Homotheticity and Balanced Growth

Finally, define the marginal rate of substitution between consumption at any

two dates t and t+ s as

MRS(ct+s, ct) =

@u(c)
@ct+s

@u(c)
@ct

The lifetime utility function u is said to be homothetic if MRS(ct+s, ct) =

MRS(�ct+s,�ct) for all � > 0 and c.
It is easy to verify that for a period utility function U of CRRA variety

the lifetime utility function u is homothetic, since

MRS(ct+s, ct) =
�t+s

(ct+s)
��

�t
(ct)

�� =

�t+s
(�ct+s)

��

�t
(�ct)

�� = MRS(�ct+s,�ct) (2.37)

With homothetic lifetime utility, if an agent’s lifetime income doubles, opti-

mal consumption choices will double in each period (income expansion paths

11Note that in order to interpret (2.36) as a regression one needs a theory where the
error term comes from. In models with risk this error term can be linked to expectational
errors, and (2.36) with error term arises as a first order approximation to the stochastic
version of the Euler equation.
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are linear).

12
It also means that consumption allocations are independent of

the units of measurement employed.

This property of the utility function is crucial for the existence of a

balanced growth in models with growth in endowments (or technological

progress in production models). Define a balanced growth path as a situa-

tion in which consumption grows at a constant rate, ct = (1 + g)tc0 and the

real interest rate is constant over time, rt+1 = r for all t.
Plugging in for a balanced growth path, equation (2.35) yields, for all t

@u(c)
@ct+1

@u(c)
@ct

= MRS(ct+1, ct) =
1

1 + r
.

But for this equation to hold for all t we require that

MRS(ct+1, ct) = MRS((1 + g)tc1, (1 + g)tc0) = MRS(c1, c0)

and thus that u is homothetic (where � = (1 + g)t in equation (2.37)).
Thus homothetic lifetime utility is a necessary condition for the existence of

a balanced growth path in growth models. Above we showed that CRRA

period utility implies homotheticity of lifetime utility u. Without proof here

we state that CRRA utility is the only period utility function such that

lifetime utility is homothetic. Thus (at least in the class of time separable

lifetime utility functions) CRRA period utility is a necessary condition for

the existence of a balanced growth path, which in part explains why this

utility function is used in a wide range of macroeconomic applications.

12In the absense of borrowing constraints and other frictions that we will discuss later.



Chapter 3

The Neoclassical Growth
Model in Discrete Time

3.1 Setup of the Model

The neoclassical growth model is arguably the single most important workhorse

in modern macroeconomics. It is widely used in growth theory, business cycle

theory and quantitative applications in public finance.

Time is discrete and indexed by t = 0, 1, 2, . . . In each period there are

three goods that are traded, labor services nt, capital services kt and a final

output good yt that can be either consumed, ct or invested, it. As usual

for a complete description of the economy we have to specify technology,

preferences, endowments and the information structure. Later, when looking

at an equilibrium of this economy we have to specify the equilibrium concept

that we intend to use.

1. Technology: The final output good is produced using as inputs labor

and capital services, according to the aggregate production function F

yt = F (kt, nt)

Note that I do not allow free disposal. If I want to allow free dis-

posal, I will specify this explicitly by defining an separate free disposal

technology. Output can be consumed or invested

yt = it + ct

37
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Investment augments the capital stock which depreciates at a constant

rate � over time

kt+1 = (1� �)kt + it.

In what follows we make the assumption that the capital stock depre-

ciates independent of whether it is used in production or not (which

then conveniently implies that it will never be optimal -for the social

planner or the actors in the competitive equilibrium- to not use the

capital stock fully in production). We can rewrite the last equation as

it = kt+1 � kt + �kt

i.e. gross investment it equals net investment kt+1�kt plus depreciation
�kt. We will require that kt+1 � 0, but not that it � 0. This assumes

that the existing capital stock can be dis-invested and eaten. Note that

I have been a bit sloppy: strictly speaking the capital stock and capital

services generated from this stock are di↵erent things. We will assume

(once we specify the ownership structure of this economy in order to

define an equilibrium) that households own the capital stock and make

the investment decision. They will rent out capital to the firms. We

denote both the capital stock and the flow of capital services by kt.
Implicitly this assumes that there is some technology that transforms

one unit of the capital stock at period t into one unit of capital services

at period t. We will ignore this subtlety for the moment.

2. Preferences: There is a large number of identical, infinitely lived house-

holds. Since all households are identical and we will restrict ourselves

to type-identical allocations

1
we can, without loss of generality assume

that there is a single representative household. Preferences of each

household are assumed to be representable by a time-separable utility

function:

u ({ct}1t=0) =

1X

t=0

�tU(ct)

3. Endowments: Each household has two types of endowments. At period

0 each household is born with endowments

¯k0 of initial capital. Fur-

thermore each household is endowed with one unit of productive time

in each period, to be devoted either to leisure or to work.

1Identical households receive the same allocation by assumption.
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4. Information: There is no risk in this economy and we assume that

households and firms have perfect foresight.

5. Equilibrium: We postpone the discussion of the equilibrium concept

to a later point as we will first be concerned with an optimal growth

problem where we solve for Pareto optimal allocations.

3.2 Optimal Growth: Pareto Optimal Allo-
cations

Consider the problem of a social planner that wants to maximize the utility

of the representative agent, subject to the technological constraints of the

economy. Note that, as long as we restrict our attention to type-identical

allocations, an allocation that maximizes the utility of the representative

agent, subject to the technology constraint is a Pareto e�cient allocation

and every Pareto e�cient allocation solves the social planner problem below.

Just as a reference we have the following definitions

Definition 10 An allocation {ct, kt, nt}1t=0 is feasible2 if for all t � 0

F (kt, nt) = ct + kt+1 � (1� �)kt
ct � 0, kt � 0, 0  nt  1

k0  ¯k0

Definition 11 An allocation {ct, kt, nt}1t=0 is Pareto e�cient if it is feasible
and there is no other feasible allocation {ĉt, ˆkt, n̂t}1t=0 such that

1X

t=0

�tU(ĉt) >
1X

t=0

�tU(ct)

Note that in this definition I have used the fact that all households are

identical.

2Strictly speaking the resource constraint for period t = 0 should read as

F (k0, n0) = c0 + k1 � (1� �)k̄0

but given our assumption that the capital stock depreciates independent of whether it will
be used in production or not, the distinction between k0 and k̄0 will be immaterial in what
follows.
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3.2.1 Social Planner Problem in Sequential Formula-
tion

The problem of the planner is

w(¯k0) = max

{ct,kt,nt}1t=0

1X

t=0

�tU(ct)

s.t. F (kt, nt) = ct + kt+1 � (1� �)kt
ct � 0, kt � 0, 0  nt  1

k0  ¯k0

The function w(¯k0) has the following interpretation: it gives the total life-
time utility of the representative household if the social planner chooses

{ct, kt, nt}1t=0 optimally and the initial capital stock in the economy is

¯k0.
Under the assumptions made below the function w is strictly increasing,

since a higher initial capital stock yields higher production in the initial pe-

riod and hence enables more consumption or capital accumulation (or both)

in the initial period.

We now make the following assumptions on preferences and technology.

Assumption 1: U is continuously di↵erentiable, strictly increasing,

strictly concave and bounded. It satisfies the Inada conditions limc&0 U 0
(c) =

1 and limc!1 U 0
(c) = 0. The discount factor � satisfies � 2 (0, 1)

Assumption 2: F is continuously di↵erentiable and homogenous of

degree 1, strictly increasing and strictly concave. Furthermore F (0, n) =

F (k, 0) = 0 for all k, n > 0.Also F satisfies the Inada conditions limk&0 Fk(k, 1) =
1 and limk!1 Fk(k, 1) = 0. Also � 2 [0, 1]

From these assumptions two immediate consequences for optimal alloca-

tions are that nt = 1 for all t since households do not value leisure in their

utility function. Also, since the production function is strictly increasing in

capital, k0 =

¯k0. To simplify notation we define f(k) = F (k, 1) + (1 � �)k,
for all k. The function f gives the total amount of the final good avail-

able for consumption or investment (again remember that the capital stock

can be eaten). From assumption 2 the following properties of f follow

more or less directly: f is continuously di↵erentiable, strictly increasing and

strictly concave, f(0) = 0, f 0
(k) > 0 for all k, limk&0 f 0

(k) = 1 and

limk!1 f 0
(k) = 1� �.

Using the implications of the assumptions, and substituting for ct =
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f(kt)� kt+1 we can rewrite the social planner’s problem as

w(¯k0) = max

{kt+1}1t=0

1X

t=0

�tU(f(kt)� kt+1) (3.1)

0  kt+1  f(kt)

k0 =

¯k0 > 0 given

The only choice that the planner faces is the choice between letting the

consumer eat today versus investing in the capital stock so that the consumer

can eat more tomorrow. Let the optimal sequence of capital stocks be denoted

by {k⇤
t+1}1t=0. The two questions that we face when looking at this problem

are

1. Why do we want to solve such a hypothetical problem of an even more

hypothetical social planner. The answer to this questions is that, by

solving this problem, we will have solved for competitive equilibrium

allocations of our model (of course we first have to define what a com-

petitive equilibrium is). The theoretical justification underlying this

result are the two welfare theorems, which hold in this model and in

many others, too. We will give a loose justification of the theorems a bit

later, and postpone a rigorous treatment of the two welfare theorems

in infinite dimensional spaces until chapter 7 of these notes.

2. How do we solve this problem?

3
The answer is: dynamic programming.

The problem above is an infinite-dimensional optimization problem,

i.e. we have to find an optimal infinite sequence (k1, k2, . . .) solving the

problem above. The idea of dynamic programing is to find a simpler

maximization problem by exploiting the stationarity of the economic

environment and then to demonstrate that the solution to the simpler

maximization problem solves the original maximization problem.

To make the second point more concrete, note that we can rewrite the

3Just a caveat: infinite-dimensional maximization problems may not have a solution
even if the u and f are well-behaved. So the function w may not always be well-defined.
In our examples, with the assumptions that we made, everything is fine, however.
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problem above as

w(k0) = max

{kt+1}1t=0 s.t.
0kt+1f(kt), k0 given

1X

t=0

�tU(f(kt)� kt+1)

= max

{kt+1}1t=0 s.t.
0kt+1f(kt), k0 given

(
U(f(k0)� k1) + �

1X

t=1

�t�1U(f(kt)� kt+1)

)

= max

k1 s.t.
0k1f(k0), k0 given

8
<

:U(f(k0)� k1) + �

2

4
max

{kt+1}1t=1
0kt+1f(kt), k1 given

1X

t=1

�t�1U(f(kt)� kt+1)

3

5

9
=

;

= max

k1 s.t.
0k1f(k0), k0 given

8
<

:U(f(k0)� k1) + �

2

4
max

{kt+2}1t=0
0kt+2f(kt+1), k1 given

1X

t=0

�tU(f(kt+1)� kt+2)

3

5

9
=

;

Looking at the maximization problem inside the [ ]-brackets and comparing

to the original problem (3.1) we see that the [ ]-problem is that of a social

planner that, given initial capital stock k1, maximizes lifetime utility of the

representative agent from period 1 onwards. But agents don’t age in our

model, the technology or the utility functions doesn’t change over time; this

suggests that the optimal value of the problem in [ ]-brackets is equal to

w(k1) and hence the problem can be rewritten as

w(k0) = max

0k1f(k0)
k0 given

{U(f(k0)� k1) + �w(k1)}

Again two questions arise:

2.1 Under which conditions is this suggestive discussion formally correct?

We will come back to this in chapters 4-5. Specifically, moving from the

2

nd
to the 3

rd
line of the above argument we replaced the maximization

over the entire sequence with two nested maximization problems, one

with respect to {kt+1}1t=1, conditional on k1, and one with respect to

k1. This is not an innocuous move.

2.2 Is this progress? Of course, the maximization problem is much eas-

ier since, instead of maximizing over infinite sequences we maximize

over just one number, k1. But we can’t really solve the maximization

problem, because the function w(.) appears on the right side, and we

don’t know this function. The next section shows ways to overcome

this problem.
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3.2.2 Recursive Formulation of Social Planner Prob-
lem

The above formulation of the social planners problem with a function on

the left and right side of the maximization problem is called recursive for-

mulation. Now we want to study this recursive formulation of the planners

problem. Since the function w(.) is associated with the sequential formula-

tion of the planner problem, let us change notation and denote by v(.) the

corresponding function for the recursive formulation of the problem.

Remember the interpretation of v(k): it is the discounted lifetime utility

of the representative agent from the current period onwards if the social

planner is given capital stock k at the beginning of the current period and

allocates consumption across time optimally for the household. This function

v (the so-called value function) solves the following recursion

v(k) = max

0k0f(k)
{U(f(k)� k0

) + �v(k0
)} (3.2)

Note again that v and w are two very di↵erent functions; v is the value

function for the recursive formulation of the planners problem and w is the

corresponding function for the sequential problem. Of course below we want

to establish that v = w, but this is something that we have to prove rather

than something that we can assume to hold! The capital stock k that the

planner brings into the current period, result of past decisions, completely

determines what allocations are feasible from today onwards. Therefore it

is called the “state variable”: it completely summarizes the state of the

economy today (i.e. all future options that the planner has). The variable k0

is decided (or controlled) today by the social planner; it is therefore called

the “control variable”, because it can be controlled today by the planner.

4

Equation (3.2) is a functional equation (the so-called Bellman equation):

its solution is a function, rather than a number or a vector. Fortunately

the mathematical theory of functional equations is well-developed, so we can

draw on some fairly general results. The functional equation posits that the

discounted lifetime utility of the representative agent is given by the utility

that this agent receives today, U(f(k) � k0
), plus the discounted lifetime

utility from tomorrow onwards, �v(k0
). So this formulation makes clear the

planners trade-o↵: consumption (and hence utility) today, versus a higher

capital stock to work with (and hence higher discounted future utility) from

4These terms come from control theory, a field in applied mathematics.
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tomorrow onwards. Hence, for a given k this maximization problem is much

easier to solve than the problem of picking an infinite sequence of capital

stocks {kt+1}1t=0 from before. The only problem is that we have to do this

maximization for every possible capital stock k, and this posits theoretical as

well as computational problems. However, it will turn out that the functional

equation is much easier to solve than the sequential problem (3.1) (apart from
some very special cases). By solving the functional equation we mean finding

a value function v solving (3.2) and an optimal policy function k0
= g(k) that

describes the optimal k0
from the maximization part in (3.2), as a function of

k, i.e. for each possible value that k can take. Again we face several questions

associated with equation (3.2):

1. Under what condition does a solution to the functional equation (3.2)
exist and, if it exists, is it unique?

2. Is there a reliable algorithm that computes the solution (by reliable we

mean that it always converges to the correct solution, independent of

the initial guess for v?

3. Under what conditions can we solve (3.2) and be sure to have solved

(3.1), i.e. under what conditions do we have v = w and equivalence be-

tween the optimal sequential allocation {kt+1}1t=0 and allocations gen-

erated by the optimal recursive policy g(k)

4. Can we say something about the qualitative features of v and g?

The answers to these questions will be given in the next two chapters.

The answers to 1. and 2. will come from the Contraction Mapping Theorem,

to be discussed in Section 4.3. The answer to the third question makes up

what Richard Bellman called the Principle of Optimality and is discussed in

Section 5.1. Finally, under more restrictive assumptions we can characterize

the solution to the functional equation (v, g) more precisely. This will be

done in Section 5.2. In the remaining parts of this section we will look

at specific examples where we can solve the functional equation by hand.

Then we will talk about competitive equilibria and the way we can construct

prices so that Pareto optimal allocations, together with these prices, form

a competitive equilibrium. This will be our versions of the first and second

welfare theorem for the neoclassical growth model.
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3.2.3 An Example

Consider the following example. Let the period utility function be given by

U(c) = ln(c) and the aggregate production function be given by F (k, n) =
k↵n1�↵

and assume full depreciation, i.e. � = 1. Then f(k) = k↵
and the

functional equation becomes

v(k) = max

0k0k↵
{ln (k↵ � k0

) + �v(k0
)}

Remember that the solution to this functional equation is an entire function

v(.). Now we will discuss several methods to solve this functional equation.

Guess and Verify (or Method of Undetermined Coe�cients)

We will guess a particular functional form of a solution and then verify that

the solution has in fact this form (note that this does not rule out that

the functional equation has other solutions). This method works well for

the example at hand, but not so well for most other examples that we are

concerned with. Let us guess

v(k) = A+B ln(k)

where A and B are unknown coe�cients that are to be determined. The

method consists of three steps:

1. Solve the maximization problem on the right hand side, given the guess

for v, i.e. solve

max

0k0k↵
{ln (ka � k0

) + � (A+B ln(k0
))}

Obviously the constraints on k0
never bind and the objective function is

strictly concave and the constraint set is compact in k0
, for any given k.

Thus, the first order condition for k0
is su�cient for the unique solution.

The FOC yields

1

k↵ � k0 =

�B

k0

k0
=

�Bk↵

1 + �B
(3.3)
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2. Evaluate the right hand side at the optimal solution k0
=

�Bk↵

1+�B
. This

yields

RHS = ln (ka � k0
) + � (A+B ln(k0

))

= ln

✓
k↵

1 + �B

◆
+ �A+ �B ln

✓
�Bk↵

1 + �B

◆

= � ln(1 + �B) + ↵ ln(k) + �A+ �B ln

✓
�B

1 + �B

◆
+ ↵�B ln (k)

3. In order for our guess to solve the functional equation, the left hand

side of the functional equation, which we have guessed to equal LHS=

A + B ln(k) must equal the right hand side, which we just found, for

all possible values of k. If we can find coe�cients A,B for which this

is true, we have found a solution to the functional equation. Equating

LHS and RHS yields

A+B ln(k) = � ln(1 + �B) + ↵ ln(k) + �A+ �B ln

✓
�B

1 + �B

◆
+ ↵�B ln (k)

(B � ↵(1 + �B)) ln(k) = �A� ln(1 + �B) + �A+ �B ln

✓
�B

1 + �B

◆
(3.4)

But this equation has to hold for every capital stock k. The right hand
side of (3.4) does not depend on k but the left hand side does. Hence

the right hand side is a constant, and the only way to make the left

hand side a constant is to make B � ↵(1 + �B) = 0. Solving this for

B yields B =

↵
1�↵�

. Since the left hand side of (3.4) equals to 0 for

B =

↵
1�↵�

, the right hand side better is, too. Therefore the constant A
has to satisfy

0 = �A� ln(1 + �B) + �A+ �B ln

✓
�B

1 + �B

◆

= �A� ln

✓
1

1� ↵�

◆
+ �A+

↵�

1� ↵�
ln(↵�)

Solving this mess for A yields

A =

1

1� �


↵�

1� ↵�
ln(↵�) + ln(1� ↵�)

�
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We can also determine the optimal policy function k0
= g(k) by plug-

ging in B =

↵
1�↵�

into (3.3):

g(k) =

�Bk↵

1 + �B
= ↵�k↵

Hence our guess was correct: the function v⇤(k) = A+B ln(k), with A,B
as determined above, solves the functional equation, with associated policy

function g(k) = ↵�k↵.
Note that for this specific example the optimal policy of the social plan-

ner is to save a constant fraction ↵� of total output k↵
as capital stock for

tomorrow and and let the household consume a constant fraction (1 � ↵�)
of total output today. The fact that these fractions do not depend on the

level of k is very unique to this example and not a property of the model in

general. Also note that there may be other solutions to the functional equa-

tion; we have just constructed one (actually, for the specific example there

are no others, but this needs some proving). Finally, it is straightforward

to construct a sequence {kt+1}1t=0 from our policy function g that will turn

out to solve the sequential problem (3.1) (of course for the specific functional
forms used in the example): start from k0 = ¯k0 and then recursively

k1 = g(k0) = ↵�k↵
0

k2 = g(k1) = ↵�k↵
1 = (↵�)1+↵k↵2

0

.

.

.

kt = (↵�)
Pt�1

j=0 ↵
j

k↵t

0

Obviously, since 0 < ↵ < 1 we have that

lim

t!1
kt = (↵�)

1
1�↵

= k⇤

for all initial conditions k0 > 0. Not surprisingly, k⇤
is the unique solution

to the equation g(k) = k.

Value Function Iteration: Analytical Approach

In the last section we started with a clever guess, parameterized it and used

the method of undetermined coe�cients (guess and verify) to solve for the
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solution v⇤ of the functional equation. For just about any other than the

log-utility, Cobb-Douglas production function, � = 1 case this method would

not work; even your most ingenious guesses would fail when trying to be

verified.

Consider instead the following iterative procedure for our previous exam-

ple

1. Guess an arbitrary function v0(k). For concreteness let’s take v0(k) = 0

for all

2. Proceed by solving

v1(k) = max

0k0k↵
{ln (k↵ � k0

) + �v0(k
0
)}

Note that we can solve the maximization problem on the right hand

side since we know v0 (since we have guessed it). In particular, since

v0(k0
) = 0 for all k0

we have as optimal solution to this problem

k0
= g1(k) = 0 for all k

Plugging this back in we get

v1(k) = ln (k↵ � 0) + �v0(0) = ln k↵
= ↵ ln k

3. Now we can solve

v2(k) = max

0k0k↵
{ln (k↵ � k0

) + �v1(k
0
)}

since we know v1 and so forth.

4. By iterating on the recursion

vn+1(k) = max

0k0k↵
{ln (k↵ � k0

) + �vn(k
0
)}

we obtain a sequence of value functions {vn}1n=0 and policy functions

{gn}1n=1. Hopefully these sequences will converge to the solution v⇤

and associated policy g⇤ of the functional equation. In fact, below we

will state and prove a very important theorem asserting exactly that

(under certain conditions) this iterative procedure converges for any

initial guess v0, and converges to the unique correct solution v⇤.
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In the homework I let you carry out the first few iterations of this proce-

dure. Note however, that, in order to find the solution v⇤ exactly you would

have to carry out step 3. above a lot of times (in fact, infinitely many times),

which is, of course, infeasible. Therefore one has to implement this procedure

numerically on a computer.

Value Function Iteration: Numerical Approach

Even a computer can carry out only a finite number of calculation and can

only store finite-dimensional objects. Hence the best we can hope for is a

numerical approximation of the true value function. The functional equa-

tion above is defined for all k � 0 (in fact there is an upper bound, but

let’s ignore this for now). Because computer storage space is finite, we will

approximate the value function for a finite number of points only.

5
For

the sake of the argument suppose that k and k0
can only take values in

K = {0.04, 0.08, 0.12, 0.16, 0.2}. Note that the value function vn then con-

sists of 5 numbers, (vn(0.04), vn(0.08), vn(0.12), vn(0.16), vn(0.2))
Now let us implement the above algorithm numerically. First we have to

pick concrete values for the parameters ↵ and �. Let us pick ↵ = 0.3 and

� = 0.6.

1. Make the initial guess v0(k) = 0 for all k 2 K
2. Solve

v1(k) = max

0k0k0.3

k02K

�
ln

�
k0.3 � k0�

+ 0.6 ⇤ 0 

This obviously yields as optimal policy k0
(k) = g1(k) = 0.04 for all

k 2 K (note that since k0 2 K is required, k0
= 0 is not allowed).

Plugging this back in yields

v1(0.04) = ln(0.040.3 � 0.04) = �1.077

v1(0.08) = ln(0.080.3 � 0.04) = �0.847

v1(0.12) = ln(0.120.3 � 0.04) = �0.715

v1(0.16) = ln(0.160.3 � 0.04) = �0.622

v1(0.2) = ln(0.20.3 � 0.04) = �0.55
5In this course I will only discuss so-called finite state-space methods, i.e. methods in

which the state variable (and the control variable) can take only a finite number of values.
For a general treatment of computational methods in economics see the textbooks by Judd
(1998), Miranda and Fackler (2002) or Heer and Maussner (2009).
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3. Let’s do one more step by hand

v2(k) =

8
<

: max

0k0k0.3

k02K

ln

�
k0.3 � k0�

+ 0.6v1(k
0
)

9
=

;

Start with k = 0.04 :

v2(0.04) = max

0k00.040.3

k02K

�
ln

�
0.040.3 � k0�

+ 0.6v1(k
0
)

 

Since 0.040.3 = 0.381 all k0 2 K are possible. If the planner chooses

k0
= 0.04, then

v2(0.04) = ln

�
0.040.3 � 0.04

�
+ 0.6 ⇤ (�1.077) = �1.723

If he chooses k0
= 0.08, then

v2(0.04) = ln

�
0.040.3 � 0.08

�
+ 0.6 ⇤ (�0.847) = �1.710

If he chooses k0
= 0.12, then

v2(0.04) = ln

�
0.040.3 � 0.12

�
+ 0.6 ⇤ (�0.715) = �1.773

If k0
= 0.16, then

v2(0.04) = ln

�
0.040.3 � 0.16

�
+ 0.6 ⇤ (�0.622) = �1.884

Finally, if k0
= 0.2, then

v2(0.04) = ln

�
0.040.3 � 0.2

�
+ 0.6 ⇤ (�0.55) = �2.041

Hence for k = 0.04 the optimal choice is k0
(0.04) = g2(0.04) = 0.08 and

v2(0.04) = �1.710. This we have to do for all k 2 K. One can already

see that this is quite tedious by hand, but also that a computer can do

this quite rapidly. Table 1 below shows the value of

�
k0.3 � k0�

+ 0.6v1(k
0
)

for di↵erent values of k and k0. A ⇤ in the column for k0
that this k0

is the optimal choice for capital tomorrow, for the particular capital

stock k today
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Table 1

k0

k
0.04 0.08 0.12 0.16 0.2

0.04 �1.7227 �1.7097⇤ �1.7731 �1.8838 �2.0407
0.08 �1.4929 �1.4530⇤ �1.4822 �1.5482 �1.6439
0.12 �1.3606 �1.3081⇤ �1.3219 �1.3689 �1.4405
0.16 �1.2676 �1.2072⇤ �1.2117 �1.2474 �1.3052
0.2 �1.1959 �1.1298 �1.1279⇤ �1.1560 �1.2045

Hence the value function v2 and policy function g2 are given by

Table 2

k v2(k) g2(k)

0.04 �1.7097 0.08
0.08 �1.4530 0.08
0.12 �1.3081 0.08
0.16 �1.2072 0.08
0.2 �1.1279 0.12

In Figure 3.2.3 we plot the true value function v⇤ (remember that for this

example we know to find v⇤ analytically) and selected iterations from the

numerical value function iteration procedure. In Figure 3.2.3 we have the

corresponding policy functions.

We see from Figure 3.2.3 that the numerical approximations of the value

function converge rapidly to the true value function. After 20 iterations the

approximation and the truth are nearly indistinguishable with the naked eye

(and they are not distinguishable in the plot above). Looking at the policy

functions we see from Figure 2 that the approximating policy function do not

converge to the truth (more iterations don’t help, and the step 10 and fully

converged policy functions lie exactly on top of each either). This is due to

the fact that the analytically correct value function was found by allowing

k0
= g(k) to take any value in the real line, whereas for the approximations

we restricted k0
= gn(k) to lie in K. The function g10 approximates the true

policy function as good as possible, subject to this restriction. Therefore the

approximating value function will not converge exactly to the truth, either.

The fact that the value function approximations come much closer is due

to the fact that the utility and production function induce “curvature” into
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the value function, something that we may make more precise later. Also

note that we we plot the true value and policy function only on K, with

MATLAB interpolating between the points in K, so that the true value and

policy functions in the plots look piecewise linear.

3.2.4 The Euler Equation Approach and Transversal-
ity Conditions

We now relate our example studied above with recursive techniques to the

traditional approach of solving optimization problems. Note that this ap-

proach also, as the guess and verify method, will only work in very simple

examples, but not in general, whereas the recursive numerical approach works

for a wide range of parameterizations of the neoclassical growth model. First

let us look at a finite horizon social planners problem and then at the related

infinite horizon problem
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Figure 3.2: True and Approximated Policy Function

The Finite Horizon Case

Let us consider the social planner problem for a situation in which the rep-

resentative consumer lives for T < 1 periods, after which she dies for sure

and the economy is over. The social planner problem for this case is given

by

wT
(

¯k0) = max

{kt+1}Tt=0

TX

t=0

�tU(f(kt)� kt+1)

0  kt+1  f(kt)

k0 =

¯k0 > 0 given

Obviously, since the world goes under after period T, kT+1 = 0. Also, given

our Inada assumptions on the utility function the constraints on kt+1 will

never be binding and we will disregard them henceforth. The first thing we

note is that, since we have a finite-dimensional maximization problem and

since the set constraining the choices of {kt+1}Tt=0 is closed and bounded,

by the Bolzano-Weierstrass theorem a solution to the maximization problem

exists, so that wT
(

¯k0) is well-defined. Furthermore, since the constraint set
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is convex and we assumed that U is strictly concave (and the finite sum of

strictly concave functions is strictly concave), the solution to the maximiza-

tion problem is unique and the first order conditions are not only necessary,

but also su�cient.

Forming the Lagrangian yields

L = U(f(k0)�k1)+. . .+�tU(f(kt)�kt+1)+�t+1U(f(kt+1)�kt+2)+. . .+�TU(f(kT )�kT+1)

and hence we can find the first order conditions as

@L

@kt+1
= ��tU 0

(f(kt)�kt+1)+�t+1U 0
(f(kt+1)�kt+2)f

0
(kt+1) = 0 for all t = 0, . . . , T�1

or

U 0
(f(kt)� kt+1)| {z } = �U 0

(f(kt+1)� kt+2)| {z } f
0
(kt+1)| {z } for all t = 0, . . . , T � 1

Utility cost

for saving

1 unit more

capital for t+ 1

=

Discounted

add. utility

from one more

unit of cons.

Add. production

possible with

one more unit

of capital in t+ 1

(3.5)

The interpretation of the optimality condition is easiest with a variational

argument. Suppose the social planner in period t contemplates whether to

save one more unit of capital for tomorrow. One more unit saved reduces

consumption by one unit, at utility cost of U 0
(f(kt) � kt+1). On the other

hand, there is one more unit of capital for production to produce with tomor-

row, yielding additional output f 0
(kt+1). Each additional unit of production,

when used for consumption, is worth U 0
(f(kt+1)� kt+2) utils tomorrow, and

hence �U 0
(f(kt+1) � kt+2) utils today. At the optimum the net benefit of

such a variation in allocations must be zero, and the result is the first order

condition above.

This first order condition some times is called an Euler equation (suppos-

edly because it is loosely linked to optimality conditions in continuous time

calculus of variations, developed by Euler). Equations (3.5) is second order

di↵erence equation, a system of T equations in the T +1 unknowns {kt+1}Tt=0

(with k0 predetermined). However, we have the terminal condition kT+1 = 0

and hence, under appropriate conditions, can solve for the optimal {kt+1}Tt=0

uniquely. We can demonstrate this for our example from above.
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Again let U(c) = ln(c) and f(k) = k↵. Then (3.5) becomes

1

k↵
t � kt+1

=

�↵k↵�1
t+1

k↵
t+1 � kt+12

k↵
t+1 � kt+2 = ↵�k↵�1

t+1 (k
↵
t � kt+1) (3.6)

with k0 > 0 given and kT+1 = 0. A little trick will make our life easier. Define

zt =
kt+1

k↵t
. The variable zt is the fraction of output in period t that is saved as

capital for tomorrow, so we can interpret zt as the saving rate of the social

planner. Dividing both sides of (3.6) by k↵
t+1 we get

1� zt+1 =

↵�(k↵
t � kt+1)

kt+1
= ↵�

✓
1

zt
� 1

◆

zt+1 = 1 + ↵� � ↵�

zt
This is a first order di↵erence equation. Since we have the boundary condition

kT+1 = 0, this implies zT = 0, so we can solve this equation backwards.

Rewriting yields

zt =
↵�

1 + ↵� � zt+1
(3.7)

We can now recursively solve backwards for the entire sequence {zt}Tt=0, given
that we know zT = 0. We obtain as general formula (verify this by plugging

it into the first order di↵erence equation (3.7) above)

zt = ↵�
1� (↵�)T�t

1� (↵�)T�t+1

and hence

kt+1 = ↵�
1� (↵�)T�t

1� (↵�)T�t+1k
↵
t

ct =

1� ↵�

1� (↵�)T�t+1k
↵
t

One can also solve for the discounted future utility at time zero from the

above optimal allocation. Taking logs of the above equations yields

log(ct) = log (1� ↵�)� log

⇣
1� (↵�)T�t+1

⌘
+ ↵ log(kt)

log(kt+1) = log(↵�) + log

 
1� (↵�)T�t

1� (↵�)T�t+1

!
+ ↵ log(kt).
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Iterating on time in the second equation delivers

log(kt) = log(↵�) + log

 
1� (↵�)T�(t�1)

1� (↵�)T�(t�1)+1

!
+ ↵ log(kt�1)

= log(↵�)
t�1X

j=0

↵j
+

tX

j=1

↵j�1
log

 
1� (↵�)T�(t�j)

1� (↵�)T�(t�j)+1

!
+ ↵t

log(k0)

and thus

log(ct) = log (1� ↵�)�log

⇣
1� (↵�)T�t+1

⌘
+↵ log(↵�)

t�1X

j=0

↵j
+

tX

j=1

↵j
log

 
1� (↵�)T�(t�j)

1� (↵�)T�(t�j)+1

!
+↵t+1

log(k0)

Thus

wT
(k0) = ↵ log(k0)

TX

t=0

(↵�)t +
TX

t=0

�t
log (1� ↵�)�

TX

t=0

�t
log

⇣
1� (↵�)T�t+1

⌘
+ ↵ log(↵�)

TX

t=0

�t

t�1X

j=0

↵j

+

TX

t=0

�t

tX

j=1

↵j
log

 
1� (↵�)T�(t�j)

1� (↵�)T�(t�j)+1

!

Note that the optimal policies and the discounted future utility are functions

of the time horizon T that the social planner faces.

Taking the limit yields

6

lim

T!1
wT

(k0) = ↵ log(k0) lim

T!1

TX

t=0

(↵�)t + lim

T!1

TX

t=0

�t
log (1� ↵�) + ↵ log(↵�) lim

T!1

TX

t=0

�t

t�1X

j=0

↵j

=

↵

1� ↵�
log(k0) +

log (1� ↵�)

1� �
+ ↵ log(↵�) lim

T!1

TX

t=0

�t1� ↵t

1� ↵

=

↵

1� ↵�
log(k0) +

log (1� ↵�)

1� �
+ ↵ log(↵�)


1

(1� ↵)(1� �)
� 1

(1� ↵)(1� ↵�)

�

=

↵

1� ↵�
log(k0) +

log (1� ↵�)

1� �
+

↵� log(↵�)

(1� �)(1� ↵�)

6It is actually easier to first compute

lim
T!1

log(ct) = log (1� ↵�) + ↵ log(↵�)
t�1X

j=0

↵

j + ↵

t+1 log(k0)

and then take the infinite discounted sum.
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We observe that for this specific example

lim

T!1
↵�

1� (↵�)T�t

1� (↵�)T�t+1k
↵
t

= ↵�k↵
t

and

lim

t!1
wT

(k0) =
↵

1� ↵�
log(k0)+

1

1� �


↵�

1� ↵�
ln(↵�) + ln(1� ↵�)

�
= w(k0)

So is it the case that the optimal policy for the social planners prob-

lem with infinite time horizon always is the limit of the optimal policies for

the T�horizon planning problem (and the same is true for the value of the

planning problem)? Our results from the guess and verify method seem to

indicate this, and for this example this is indeed true, but it is not true in

general. We can’t in general interchange maximization and limit-taking: the

limit of the finite maximization problems is often but not always equal to

maximization of the problem in which time goes to infinity.

In order to prepare for the discussion of the infinite horizon case let us

analyze the first order di↵erence equation

zt+1 = 1 + ↵� � ↵�

zt

graphically. On the y-axis of Figure ?? we draw zt+1 against zt on the x-

axis. Since kt+1 � 0, we have that zt � 0 for all t. Furthermore, as zt
approaches 0 from above, zt+1 approaches �1. As zt approaches +1, zt+1

approaches 1 + ↵� from below asymptotically. The graph intersects the

x-axis at z0 =

↵�
1+↵�

. The di↵erence equation has two steady states where

zt+1 = zt = z. This can be seen by

z = 1 + ↵� � ↵�

z
z2 � (1 + ↵�)z + ↵� = 0

(z � 1)(z � ↵�) = 0

z = 1 or z = ↵�

From Figure ?? we can also determine graphically the sequence of optimal

policies {zt}Tt=0. We start with zT = 0 on the y-axis, go to the zt+1 = 1+↵��
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Figure 3.3: Dynamics of Savings Rate

↵�
zt

curve to determine zT�1 and mirror it against the 45-degree line to obtain

zT�1 on the y-axis. Repeating the argument one obtains the entire {zt}Tt=0

sequence, and hence the entire {kt+1}Tt=0 sequence. Note that going with t
backwards to zero, the zt’s approach ↵�. Hence for large T and for small

t (the optimal policies for a finite time horizon problem with long horizon,

for the early periods) come close to the optimal infinite time horizon policies

solved for with the guess and verify method.

In general, absent the assumptions of log-utility and full depreciation

we cannot reduce the second order di↵erence equation implied by the Euler

equation

U 0
(f(kt)� kt+1) = �U 0

(f(kt+1)� kt+2)f
0
(kt+1)

with initial condition k0 and terminal condition kT+1 = 0 to a first order dif-

ference equation. Instead, we need to solve the system of T Euler equations

for the unknown variables k1, k2, ..., kT numerically. One option is to sim-

ply feed it into a multi-dimensional nonlinear equation solver. Alternatively

consider the following Shooting Algorithm:

1. Guess

ˆkT . This implies ĉT = f(ˆkT )
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2. For each t = 1, ...T � 1, and given

ˆkt, ˆkt+1 from the previous step solve

ˆkt�1 from the Euler equation

U 0
(f(ˆkt)� ˆkt+1) = �U 0

(f(ˆkt+1)� ˆkt+2)f
0
(

ˆkt+1)

Note that for every

ˆkT 2 (0, ¯k) there exists a unique such sequence,

and this sequence is strictly increasing in

ˆkT

3. If

ˆk0 = k0 then we are done and have found a solution. If

ˆk0 > k0 go to

step 1 and lower the guess for

ˆkT . If instead

ˆk0 < k0 go to step 1 and

increase the guess for

ˆkT .

The Infinite Horizon Case

Now let us turn to the infinite horizon problem and let’s see how far we can

get with the Euler equation approach. Remember that the problem was to

solve

w(¯k0) = max

{kt+1}1t=0

1X

t=0

�tU(f(kt)� kt+1)

0  kt+1  f(kt)

k0 =

¯k0 > 0 given

Since the period utility function is strictly concave and the constraint

set is convex, the first order conditions constitute necessary conditions for an

optimal sequence {k⇤
t+1}1t=0 (a proof of this is a formalization of the variational

argument I spelled out when discussing the intuition for the Euler equation).

As a reminder, the Euler equations were

�U 0
(f(kt+1)� kt+2)f

0
(kt+1) = U 0

(f(kt)� kt+1) for all t = 0, . . . , t, . . .
(3.8)

Again this is a second order di↵erence equation, but now we only have an

initial condition for k0, but no terminal condition since there is no terminal

time period.

In a lot of applications, the transversality condition substitutes for the
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missing terminal condition. Let us first state and then interpret the TVC

7

lim

t!1
�tU 0

(f(kt)� kt+1)f
0
(kt)| {z } kt|{z} = 0

value in discounted

utility terms of one

more unit of capital

Total

Capital

Stock

= 0

The transversality condition states that the value of the capital stock kt,
when measured in terms of discounted utility, goes to zero as time goes to

infinity. Note that this condition does not require that the capital stock itself

converges to zero in the limit, only that the (shadow) value of the capital

stock has to converge to zero.

The transversality condition is a tricky beast, and you may spend some

7Often one can find an alternative statement of the TVC in the literature:

lim
t!1

�tkt+1 = 0

where �t is the Lagrange multiplier on the constraint

ct + kt+1 = f(kt)

in the social planner problem in which consumption is not yet substituted out in the
objective function. From the first order condition we have

�

t
U

0(ct) = �t

�

t
U

0(f(kt)� kt+1) = �t

Hence the TVC becomes

lim
t!1

�

t
U

0(f(kt)� kt+1)kt+1 = 0

This condition is equvalent to the condition given in the main text, as shown by the
following argument (which uses the Euler equation)

0 = lim
t!1

�

t
U

0(f(kt)� kt+1)kt+1

= lim
t!1

�

t�1
U

0(f(kt�1)� kt)kt

= lim
t!1

�

t�1
�U

0(f(kt)� kt+1)f
0(kt)kt

= lim
t!1

�

t
U

0(f(kt)� kt+1)f
0(kt)kt

which is the TVC in the main text.
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more time on it as the semester progresses. For now we just state the follow-

ing theorem (see Stokey and Lucas, p. 98):

Theorem 12 Let U, � and F (and hence f) satisfy assumptions 1. and
2. Then an allocation {kt+1}1t=0 that satisfies the Euler equations and the
transversality condition solves the sequential social planners problem, for a
given k0.

This theorem states that under certain assumptions the Euler equations

and the transversality condition are jointly su�cient for a solution to the

social planners problem in sequential formulation. Stokey et al., p. 98-99

prove this theorem. Note that in their proof they do not use the boundedness

assumption on U, and thus the result applies to unbounded utility functions

as well (such as CRRA utility), as long as U satisfies the other assumptions.

Also note that we have said nothing about the necessity of the TVC. We

have (loosely) argued that the Euler equations are necessary conditions, but

is the TVC necessary, i.e. does every solution to the sequential planning

problem have to satisfy the TVC? This turns out to be a hard problem, and

there is not a very general result for this. However, for the log-case (with

f 0s satisfying our assumptions), Ekelund and Scheinkman (1985) show that

the TVC is in fact a necessary condition. Refer to their paper and to the

related results by Peleg and Ryder (1972) and Weitzman (1973) for further

details. From now on we assert that the TVC is necessary and su�cient

for optimization under the assumptions we made on f, U, but you should

remember that these assertions remain to be proved.

But now we take these theoretical results for granted and proceed with

our example of U(c) = ln(c), f(k) = k↵. For these particular functional

forms, the TVC becomes

lim

t!1
�tU 0

(f(kt)� kt+1)f
0
(kt)kt

= lim

t!1

↵�tk↵
t

k↵
t � kt+1

= lim

t!1

↵�t

1� kt+1

k↵t

= lim

t!1

↵�t

1� zt

We also repeat the first order di↵erence equation derived from the Euler

equations

zt+1 = 1 + ↵� � ↵�

zt
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We can’t solve the Euler equations form {zt}1t=0 backwards, but we can solve

it forwards, conditional on guessing an initial value for z0. We show that

only one guess for z0 yields a sequence that does not violate the TVC or the

nonnegativity constraint on capital or consumption.

1. z0 < ↵�. From Figure ?? we see that in finite time zt < 0, violating
the nonnegativity constraint on capital

2. z0 > ↵�. Then from Figure 3 we see that limt!1 zt = 1. (Note that, in
fact, every z0 > 1 violate the nonnegativity of consumption and hence

is not admissible as a starting value). We will argue that all these paths

violate the TVC.

3. z0 = ↵�. Then zt = ↵� for all t > 0. For this path (which obviously

satisfies the Euler equations) we have that

lim

t!1

↵�t

1� zt
= lim

t!1

↵�t

1� ↵�
= 0

and hence this sequence satisfies the TVC. From the su�ciency of the

Euler equation jointly with the TVC we conclude that the sequence

{zt}1t=0 given by zt = ↵� is an optimal solution for the sequential social

planners problem. Translating into capital sequences yields as optimal

policy kt+1 = ↵�k↵
t , with k0 given. But this is exactly the constant

saving rate policy that we derived as optimal in the recursive problem.

Now we pick up the unfinished business from point 2. Note that we

asserted above (citing Ekelund and Scheinkman) that for our particular ex-

ample the TVC is also a necessary condition, i.e. any sequence {kt+1}1t=0

that does not satisfy the TVC can’t be an optimal solution.

Since all sequences {zt}1t=0 from case 2. above converge to 1, in the

TVC both the nominator and the denominator go to zero. Let us linearly
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approximate zt+1 around the steady state z = 1. This gives

zt+1 = 1 + ↵� � ↵�

zt
:= g(zt)

zt+1 ⇡ g(1) + (zt � 1)g0(zt)|zt=1

= 1 + (zt � 1)

✓
↵�

z2t

◆
|zt=1

= 1 + ↵�(zt � 1)

(1� zt+1) ⇡ ↵�(1� zt)

⇡ (↵�)t�k+1
(1� zk) for all k

Hence

lim

t!1

↵�t+1

1� zt+1
⇡ lim

t!1

↵�t+1

(↵�)t�k+1
(1� zk)

= lim

t!1

�k

↵t�k
(1� zk)

= 1

as long as 0 < ↵ < 1. Hence non of the sequences contemplated in 2. can be

an optimal solution, and our solution found in 3. is indeed the unique optimal

solution to the infinite-dimensional social planner problem. Therefore in this

specific case the Euler equation approach, augmented by the TVC works.

But as with the guess-and-verify method this is very unique to the specific

example at hand. Therefore for the general case we can’t rely on pencil and

paper, but have to resort to computational techniques.

To make sure that these techniques give the desired answer, we have

to study the general properties of the functional equation associated with

the sequential social planner problem and the relation of its solution to the

solution of the sequential problem. We will do this in chapters 4 and 5.

Before this we will show that, by solving the social planners problem we

have, in e↵ect, solved for a (the) competitive equilibrium in this economy.

But first we will analyze the properties of the solution to the social planner

problem a bit further.

3.2.5 Steady States and the Modified Golden Rule

A steady state is defined as a social optimum or competitive equilibrium in

which allocations are constant over time, ct = c⇤ and kt+1 = k⇤. In general,
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we can only expect for a steady state to arise for the right initial condition,

that is, we need k0 = k⇤. Even if k0 6= k⇤, the allocation may over time

converge to (c⇤, k⇤
); in that case we call (c⇤, k⇤

) an (asymptotically) stable

steady steady state. We can use our previous results to sharply characterize

steady states.

The Euler equations for the social planner problem read as

�U 0
(f(kt+1)� kt+2)f

0
(kt+1) = U 0

(f(kt)� kt+1) or

�U 0
(ct+1)f

0
(kt+1) = U 0

(ct).

In a steady state ct = ct+1 = c⇤ and thus

�f 0
(k⇤

) = 1

f 0
(k⇤

) = 1 + ⇢

where ⇢ is the time discount rate. Recalling the definition of f 0
(k) = Fk(k, 1)+

1� � we obtain the so-called modified golden rule

Fk(k
⇤, 1)� � = ⇢

that is, the social planner sets the marginal product of capital, net of depre-

ciation, equal to the time discount rate. As we will see below, the net real

interest rate in a competitive equilibrium equals Fk(k, 1)� �, so the modified

golden rule can be restated as equating the real interest rate and the time

discount rate. Note that we derived exactly the same result in our simple

pure exchange economy in chapter 2.

For our example above with log-utility, Cobb-Douglas production and

� = 1 we find that

↵ (k⇤
)

↵�1
= ⇢+ 1 =

1

�

k⇤
= (↵�)

1
1�↵ .

One can also find the steady state level of capital by exploiting the optimal

policy function from the recursive solution of the problem, k0
= ↵�k↵. Setting

k0
= k and solving we find again k⇤

= (↵�)
1

1�↵ . Also note that from any

initial capital stock k0 > 0 the optimal sequence chosen by the social planner

{k⇤
t+1} converges to k⇤

= (↵�)
1

1�↵ . This is no accident: the unique steady

state of the neoclassical growth model is globally asymptotically stable in
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general. We will show this in the continuous time version of the model in

chapter 8.

Note that the name modified golden rule comes from the following con-

sideration: the resource constraint reads as

ct = f(kt)� kt+1

and in the steady state

c = f(k)� k.

The capital stock that maximizes consumption per capita, called the (origi-

nal) golden rule kg, therefore satisfies

f 0
(kg

) = 1 or

Fk(k
g, 1)� � = 0

Thus the social planner finds it optimal to set capital k⇤ < kg
in the long

run because he respects the impatience of the representative household.

3.2.6 A Remark About Balanced Growth

So far we have abstracted both from population growth as well as technolog-

ical progress. As a consequence there is no long-run growth in aggregate and

in per-capita variables as the economy converges to its long-run steady state.

Thus the neoclassical growth model does not generate long-run growth.

Fortunately this shortcoming is easily fixed. So now assume that the

population is growing at rate n, so that at time t the size of the popula-

tion is Nt = (1 + n)t. Furthermore assume that there is labor-augmenting

technological progress, so that output at date t is produced according to the

production function

F (Kt, Nt(1 + g)t)

where Kt is the total capital stock in the economy. In the model with pop-

ulation growth there is some choice as to what the objective function of the

social planner (and the household in the competitive equilibrium) ought to

be. Either per capita lifetime utility

1X

t=0

�tU(ct) (3.9)
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or lifetime utility of the entire dynasty

1X

t=0

Nt�
tU(ct) (3.10)

is being maximized. We will go with the first formulation, but also give

results for the second (nothing substantial changes, just some adjustments

in the algebra are required). The resource constraint reads as

(1 + n)tct +Kt+1 = F (Kt, (1 + n)t(1 + g)t) + (1� �)Kt.

Now we define growth-adjusted per capita variables as

c̃t =

ct
(1 + g)t

˜kt =

kt
(1 + g)t

=

Kt

(1 + n)t(1 + g)t

and divide the resource constraint by (1 + n)t(1 + g)t to obtain

c̃t + (1 + n)(1 + g)˜kt+1 = F (

˜kt, 1) + (1� �)˜kt. (3.11)

In order to be able to analyze this economy and to obtain a balanced growth

path we now assume that the period utility function is of CRRA form U(c) =
c1��

1��
. We can then rewrite the objective function (3.9) as

1X

t=0

�t c
1��
t

1� �
=

1X

t=0

�t (c̃t(1 + g)t)1��

1� �

=

1X

t=0

˜�t c̃t
1��

1� �

where

˜� = �(1+g)1��. Note that had we assumed (3.10) as our objective, only
our definition of

˜� would change

8
; it would now read as

˜� = �(1+n)(1+g)1��.
Given these adjustments we can rewrite the growth-deflated social planner

problem as

max

{kt+1}1t=0

1X

t=0

˜�t

⇣
f(˜kt)� (1 + g)(1 + n)˜kt+1

⌘1��

1� �

0  (1 + g)(1 + n)˜kt+1  f(˜kt)
˜k0 = k0 given

8In either case one must now assume �̃ < 1 which entails a joint assumption on the
parameters �,�, g of the model.
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and all the analysis from above goes through completely unchanged. In par-

ticular, all the recursive techniques apply and the Euler equation techniques

remain the same

A balanced growth path is a socially optimal allocation (or a competitive

equilibrium) where all variables grow at a constant rate (this rate may vary

across variables). Given our deflation above a balanced growth path in the

variables {ct, kt+1} corresponds to constant steady state for {c̃t, ˜kt+1}. The
Euler equations associated with the social planner problem above is

(1 + n)(1 + g) (c̃t)
��

=

˜� (c̃t+1)
��
h
Fk(

˜kt+1, 1) + (1� �)
i
. (3.12)

Evaluated at the steady state this reads as

(1 + n)(1 + g) = ˜�
h
Fk(

˜k⇤, 1) + (1� �)
i

Defining

˜� =

1
1+⇢̃

we have

(1 + n)(1 + g)(1 + ⇢̃) = Fk(
˜k⇤, 1) + (1� �)

or, as long as the terms ng, n⇢̃, g⇢̃ are su�ciently small, the new modified

golden rule reads as

Fk(
˜k⇤, 1)� � = n+ g + ⇢̃.

Note that the original golden rule in this growing economy is defined as

maximizing, growth-deflated per capita consumption

c̃ = f(˜k)� (1 + g)(1 + n)˜k

and thus (approximately)

Fk(
˜kg, 1)� � = n+ g.

Once the optimal growth-deflated variables {c̃t, ˜kt+1}1t=0 have been deter-

mined, the true variables of interest can trivially be computed as

ct = (1 + g)tc̃t and kt+1 = (1 + g)t˜kt+1

Ct = (1 + n)t(1 + g)tc̃t and Kt+1 = (1 + n)t(1 + g)t˜kt+1.

Overall we conclude that the model with population growth and tech-

nological progress is no harder to analyze than the benchmark model. All

we have to do is to redefine the time discount factor, deflate all per-capita

variables by technological progress, all aggregate variables in addition by pop-

ulation growth, and pre-multiply e↵ective capital tomorrow by (1+n)(1+g).



68CHAPTER 3. THE NEOCLASSICAL GROWTHMODEL IN DISCRETE TIME

3.3 Competitive Equilibrium Growth

Suppose we have solved the social planners problem for a Pareto e�cient

allocation {c⇤t , k⇤
t+1}1t=0. What we are genuinely interested in are allocations

and prices that arise when firms and consumers interact in markets. In this

section we will discuss the connection between Pareto optimal allocations and

allocations arising in a competitive equilibrium. For the discussion of Pareto

optimal allocations it did not matter who owns what in the economy, since

the planner was allowed to freely redistribute endowments across agents. For

a competitive equilibrium the question of ownership is crucial. We make the

following assumption on the ownership structure of the economy: we assume

that consumers own all factors of production (i.e. they own the capital stock

at all times) and rent it out to the firms. We also assume that households

own the firms, i.e. are claimants of the firms’ profits.

Now we have to specify the equilibrium concept and the market structure.

We assume that the final goods market and the factor markets (for labor and

capital services) are perfectly competitive, which means that households as

well as firms take prices are given and beyond their control. We assume that

there is a single market at time zero in which goods for all future periods

are traded. After this market closes, in all future periods the agents in

the economy just carry out the trades they agreed upon in period 0. We

assume that all contracts are perfectly enforceable. This market is often

called Arrow-Debreu market structure and the corresponding competitive

equilibrium an Arrow-Debreu equilibrium.

For each period there are three goods that are traded:

1. The final output good, yt that can be used for consumption ct or in-

vestment it purposes of the household. Let pt denote the price of the

period t final output good, quoted in period 0. We let the period 0

output good be the numeraire and thus normalize p0 = 1.

2. Labor services nt. Let wt be the price of one unit of labor services

delivered in period t, quoted in period 0, in terms of the period t con-
sumption good. Hence wt is the real wage; it tells how many units of

the period t consumption goods one can buy for the receipts for one

unit of labor. The wage in terms of the numeraire, the period 0 output

good is ptwt.

3. Capital services kt. Let rt be the rental price of one unit of capital
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Figure 3.4: Flows of Goods and Payments in Neoclassical Growth Model

services delivered in period t, quoted in period 0, in terms of the period

t consumption good. Note that rt is the real rental rate of capital; the

rental rate in terms of the numeraire good is ptrt.

Figure 3.3 summarizes the flows of goods and payments in the economy

(note that, since all trade takes place in period 0, no payments are made

after period 0).

3.3.1 Definition of Competitive Equilibrium

Now we will define a competitive equilibrium for this economy. Let us first

look at firms. Without loss of generality assume that there is a single, rep-

resentative firm that behaves competitively.

9

The representative firm’s problem is, given a sequence of prices {pt, wt, rt}1t=0,

9As we will show below this is an innocuous assumption as long as the technology
features constant returns to scale.
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to solve:

⇡ = max

{yt,kt,nt}1t=0

1X

t=0

pt(yt � rtkt � wtnt) (3.13)

s.t. yt = F (kt, nt) for all t � 0

yt, kt, nt � 0

Hence firms chose an infinite sequence of inputs {kt, nt} to maximize total

profits ⇡. Since in each period all inputs are rented (the firm does not make

the capital accumulation decision), there is nothing dynamic about the firm’s

problem and it will separate into an infinite number of static maximization

problems.

Households instead face a fully dynamic problem in this economy. They

own the capital stock and hence have to decide how much labor and capital

services to supply, how much to consume and how much capital to accu-

mulate. Taking prices {pt, wt, rt}1t=0 as given the representative consumer

solves

max

{ct,it,xt+1,kt,nt}1t=0

1X

t=0

�tU (ct) (3.14)

s.t.
1X

t=0

pt(ct + it) 
1X

t=0

pt(rtkt + wtnt) + ⇡

xt+1 = (1� �)xt + it all t � 0

0  nt  1, 0  kt  xt all t � 0

ct, xt+1 � 0 all t � 0

x0 given

A few remarks are in order. First, there is only one, time zero budget con-

straint, the so-called Arrow-Debreu budget constraint, as markets are only

open in period 0. Secondly we carefully distinguish between the capital stock

xt and capital services that households supply to the firm. Capital services

are traded and hence have a price attached to them, the capital stock xt re-

mains in the possession of the household, is never traded and hence does not

have a price attached to it.

10
We have implicitly assumed two things about

10This is not quite correct since we do not require investment it to be positive. If
household choose ct < �it < 0, households transform part of the capital stock back into
final output goods and sell it back to the firm at price pt.
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technology: a) as previously stated the capital stock depreciates no matter

whether it is rented out to the firm and used in production or not and b)

there is a technology for households that transforms one unit of the capital

stock at time t into one unit of capital services at time t. The constraint

kt  xt then states that households cannot provide more capital services

than the capital stock at their disposal produces. Also note that we only

require the capital stock to be nonnegative, but not investment. We are now

ready to define a competitive equilibrium for this economy.

Definition 13 A Competitive Equilibrium (Arrow-Debreu Equilibrium) con-
sists of prices {pt, wt, rt}1t=0 and allocations for the firm {kd

t , n
d
t , yt}1t=0 and

the household {ct, it, xt+1, ks
t , n

s
t}1t=0 such that

1. Given prices {pt, wt, rt}1t=0, the allocation of the representative firm
{kd

t , n
d
t , yt}1t=0 solves (3.13)

2. Given prices {pt, wt, rt}1t=0, the allocation of the representative house-
hold {ct, it, xt+1, ks

t , n
s
t}1t=0 solves (3.14)

3. Markets clear

yt = ct + it (Goods Market)

nd
t = ns

t (Labor Market)

kd
t = ks

t (Capital Services Market)

3.3.2 Characterization of the Competitive Equilibrium
and the Welfare Theorems

Firms

Let us start with a partial characterization of the competitive equilibrium.

First of all we simplify notation and denote by kt = kd
t = ks

t the equilibrium

demand and supply of capital services. Similarly nt = nd
t = ns

t . It is straight-
forward to show that in any equilibrium pt > 0 for all t, since the utility

function is strictly increasing in consumption (and therefore consumption

demand would be infinite at a zero price). But then, since the production

function exhibits positive marginal products, rt, wt > 0 in any competitive

equilibrium because otherwise factor demands would become unbounded.
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Now let us analyze the problem of the representative firm. As stated ear-

lier, the firms does not face a dynamic decision problem as the variables cho-

sen at period t, (yt, kt, nt) do not a↵ect the constraints nor returns (profits) at

later periods. The static profit maximization problem for the representative

firm is given by

⇡t = max

kt,nt�0
pt (F (kt, nt)� rtkt � wtnt)

Since the firm take prices as given, the usual “factor price equals marginal

product” conditions arise

rt = Fk(kt, nt)

wt = Fn(kt, nt) (3.15)

Substituting marginal products for factor prices in the expression for profits

implies that in equilibrium the profits the firms earns in period t are equal

to

⇡t = pt (F (kt, nt)� Fk(kt, nt)kt � Fn(kt, nt)nt) = 0

The fact that profits are equal to zero is a consequence of perfect com-

petition (and the associated marginal product pricing conditions (3.15)) and
the assumption that the production function F exhibits constant returns to

scale (that is, it is homogeneous of degree 1):

F (�k,�n) = �F (k, n) for all � > 0

Euler’s theorem

11
states that for any function that is homogeneous of degree

1 payments to production factors exhaust output, or formally:

F (kt, nt) = Fk(kt, nt)kt + Fn(kt, nt)nt

11Euler’s theorem states that for any function that is homogeneous of degree k and
di↵erentiable at x 2 R

L we have

kf(x) =
LX

i=1

xi
@f(x)

@xi

Proof. Since f is homogeneous of degree k we have for all � > 0

f(�x) = �

k
f(x)

Di↵erentiating both sides with respect to � yields

LX

i=1

xi
@f(�x)

@xi
= k�

k�1
f(x)
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Therefore total profits of the representative firm ⇡t are equal to zero in equi-

librium in every period, and thus overall profits ⇡ = 0 in equilibrium as well.

This result of course also implies that the owner of the firm, the representa-

tive household, will not receive any profits in equilibrium either.

We now return to the point that with a CRTS production technology the

assumption of having a single representative (competitively behaving) firm

is innocuous. In fact, with CRTS the number of firms is indeterminate in

a competitive equilibrium; it could be one firm, two firms each operating

at half the scale of the one firm or 10 million firms. To see this, first note

that constant returns to scale imply that the marginal products of labor and

capital are homogeneous of degree 0: for all � > 0 we have

12

Fk(�kt,�nt) = Fk(kt, nt)

Fk(�kt,�nt) = Fk(kt, nt).

Taking � =

1
n
we obtain

Fk(k/n, 1) = Fk(k, n).

Therefore equation

rt = Fk(kt, nt) = Fk(kt/nt, 1) (3.16)

implies that all firms that we might assume to exist (the single representative

firm or the 10 million firms) in equilibrium would operate with exactly the

same capital-labor ratio determined by (3.16). Only that ratio is pinned down

Setting � = 1 yields
LX

i=1

xi
@f(x)

@xi
= kf(x)

12For any � > 0, since F has CRTS, we have:

F (�k,�n) = �F (k, n)

Di↵erentiate this expression with respect to one of the inputs, say k, to obtain

�Fk(�k,�n) = �Fk(k, n)

Fk(�k,�n) = Fk(k, n)

and thus the marginal product of capital is homogeneous of degree 0 in its argument (of
course the same can be derived for the marginal product of labor).



74CHAPTER 3. THE NEOCLASSICAL GROWTHMODEL IN DISCRETE TIME

by the marginal product pricing conditions

13
, but not the scale of operation

of each firm. So whether total output is produced by one representative (still

competitively behaving) firm with output

F (kt, nt) = ntF (kt/nt, 1)

or nt firms, each with one worker and output F (kt/nt, 1) is both indetermi-

nate and irrelevant for the equilibrium, and without loss of generality we can

restrict attention to a single representative firm.

Households

Let’s now turn to the representative household. Given that output and factor

prices have to be positive in equilibrium it is clear that the utility maximizing

choices of the household entail

nt = 1, kt = xt

it = kt+1 � (1� �)kt

From the equilibrium condition in the goods market we also obtain

F (kt, 1) = ct + kt+1 � (1� �)kt

and thus

f(kt) = ct + kt+1.

Since utility is strictly increasing in consumption, we also can conclude that

the Arrow-Debreu budget constraint holds with equality in equilibrium. Us-

ing these results we can rewrite the household problem as

max

{ct,kt=1}1t=0

1X

t=0

�tU (ct)

s.t.
1X

t=0

pt(ct + kt+1 � (1� �)kt) =

1X

t=0

pt(rtkt + wt)

ct, kt+1 � 0 all t � 0

k0 given

13Note that the other condition

wt = Fn(kt, nt) = Fn(kt/nt, 1)

does not help here (but it does imply that rt and wt are inversely related in any competitive
equilibrium, since Fk is strictly decreasing in kt/nt and Fn is strictly increasing in it.



3.3. COMPETITIVE EQUILIBRIUM GROWTH 75

Again the first order conditions are necessary for a solution to the household

optimization problem. Attaching µ to the Arrow-Debreu budget constraint

and ignoring the nonnegativity constraints on consumption and capital stock

we get as first order conditions

14
with respect to ct, ct+1 and kt+1

�tU 0
(ct) = µpt

�t+1U 0
(ct+1) = µpt+1

µpt = µ(1� � + rt+1)pt+1

Combining yields the Euler equation

�U 0
(ct+1)

U 0
(ct)

=

pt+1

pt
=

1

1 + rt+1 � �

and thus

(1� � + rt+1) �U 0
(ct+1)

U 0
(ct)

= 1

Note that the net real interest rate in this economy is given by rt+1 � �.
When a household saves one unit of consumption for tomorrow, she can

rent it out tomorrow of a rental rate rt+1, but a fraction � of the one unit

depreciates, so the net return on her saving is rt+1� �. In these lecture notes

we sometimes let rt+1 denote the net real interest rate, sometimes the real

rental rate of capital; the context will always make clear which of the two

concepts rt+1 stands for.

Now we use the marginal pricing condition and the fact that we defined

f(kt) = F (kt, 1) + (1� �)kt

rt = Fk(kt, 1) = f 0
(kt)� (1� �)

and the market clearing condition from the goods market

ct = f(kt)� kt+1

14That the nonnegativity constraints on consumption do not bind follows directly from
the Inada conditions. The nonnegativity constraints on capital could potentially bind if we
look at the household problem in isolation. However, since from the production function
kt = 0 implies F (0, 1) = 0 and Fk(0, 1) = 1. Thus in equilibrium rt would be bid up to
the point where kt > 0 is optimal for the household. Anticipating this we take the shortcut
and ignore the corners with respect to capital holdings. But you should be aware of the
fact that we did something here that was not very clean, we used equilibrium logic before
carrying out the maximization problem of the household. This is fine here, but may lead
to a lot of problems when used in other circumstances.
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in the Euler equation to obtain

f 0
(kt+1)�U 0

(f(kt+1)� kt+2)

U 0
(f(kt)� kt+1)

= 1 (3.17)

which is exactly the same Euler equation as in the social planners problem.

Also recall that for the social planner problem, in addition we needed

to make sure that the value of the capital stock the social planner chose

converged to zero in the limit: one version of the transversality condition we

stated there was

lim

t!1
�tkt+1 = 0

where �t was the Lagrange multiplier (social shadow cost) on the resource

constraint. The Euler equation and TVC were jointly su�cient for a maxi-

mizing sequence of capital stocks. The same is true here: in addition to the

Euler equation we need to make sure that in the limit the value of the capital

stock carried forward by the household converges to zero

15
:

lim

t!1
ptkt+1 = 0

But using the first order condition yields

lim

t!1
ptkt+1 =

1

µ
lim

t!1
�tU 0

(ct)kt+1

=

1

µ
lim

t!1
�t�1U 0

(ct�1)kt

=

1

µ
lim

t!1
�t�1�U 0

(ct)(1� � + rt)kt

=

1

µ
lim

t!1
�tU 0

(f(kt)� kt+1)f
0
(kt)kt

where the Lagrange multiplier µ on the Arrow-Debreu budget constraint is

positive since the budget constraint is strictly binding. Note that this is

15We implicitly assert here that for the assumptions we made on U, f the Euler conditions
with the TVC are jointly su�cient and they are both necessary.
Note that Stokey et al. in Chapter 2.3, when they discuss the relation between the

planning problem and the competitive equilibrium allocation use the finite horizon case,
because for this case, under the assumptions made the Euler equations are both necessary
and su�cient for both the planning problem and the household optimization problem, so
they don’t have to worry about the TVC.
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exactly the same TVC as for the social planners problem (as stated in the

main text).

Hence an allocation of capital {kt+1}1t=0 satisfies the necessary and su�-

cient conditions for being a Pareto optimal allocations if and only if it satisfies

the necessary and su�cient conditions for being part of a competitive equi-

librium (always subject to the caveat about the necessity of the TVC in both

problems).

This last statement is our version of the fundamental theorems of welfare

economics for the particular economy that we consider. The first welfare

theorem states that a competitive equilibrium allocation is Pareto e�cient

(under very general assumptions). The second welfare theorem states that

any Pareto e�cient allocation can be decentralized as a competitive equilib-

rium with transfers (under much more restrictive assumptions), i.e. there

exist prices and redistributions of initial endowments such that the prices,

together with the Pareto e�cient allocation is a competitive equilibrium for

the economy with redistributed endowments.

In particular, when dealing with an economy with a representative agent

(i.e. when restricting attention to type-identical allocations), whenever the

second welfare theorem applies we can solve for Pareto e�cient allocations

by solving a social planners problem and be sure that all Pareto e�cient

allocations are competitive equilibrium allocations (since there is nobody to

redistribute endowments to/from). If, in addition, the first welfare theorem

applies we can be sure that we found all competitive equilibrium allocations.

Also note an important fact. The first welfare theorem is usually easy to

prove, whereas the second welfare theorem is substantially harder, in partic-

ular in infinite-dimensional spaces. Suppose we have proved the first welfare

theorem and we have established that there exists a unique Pareto e�cient

allocation (this in general requires representative agent economies and re-

strictions to type-identical allocations, but in these environments boils down

to showing that the social planners problem has a unique solution). Then

we have established that, if there is a competitive equilibrium, its allocation

has to equal the Pareto e�cient allocation. Of course we still need to prove

existence of a competitive equilibrium, but this is not surprising given the

intimate link between the second welfare theorem and the existence proof.

Back to our economy at hand. Once we have determined the equilib-

rium sequence of capital stocks {kt+1}1t=0 we can construct the rest of the
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competitive equilibrium. In particular equilibrium allocations are given by

ct = f(kt)� kt+1

yt = F (kt, 1)

it = yt � ct
nt = 1

for all t � 0. Finally we can construct factor equilibrium prices as

rt = Fk(kt, 1)

wt = Fn(kt, 1)

Finally, the prices of the final output good can be found as follows. We have

already normalized p0 = 1. From the Euler equations for the household in

then follows that

pt+1 =

�U 0
(ct+1)

U 0
(ct)

pt

pt+1

pt
=

�U 0
(ct+1)

U 0
(ct)

=

1

1 + rt+1 � �

pt+1 =

�t+1U 0
(ct+1)

U 0
(c0)

=

tY

⌧=0

1

1 + r⌧+1 � �

and we have constructed a complete competitive equilibrium, conditional on

having found {kt+1}1t=0.
To summarize, section 3.2 discussed how to solve for the optimal alloca-

tions of the social planner problem using recursive techniques (analytically

for an example, numerically for the general case). Chapters 4 and 5 will

give the theoretical-mathematical background for this discussion. In section

3.3 we then discussed how to decentralize this allocation as a competitive

(Arrow-Debreu) equilibrium by demonstrating that the optimal allocation,

together with appropriately chosen prices, satisfy all household and firm op-

timality and all equilibrium conditions.

3.3.3 Sequential Markets Equilibrium

We now briefly state the definition of a sequential markets equilibrium for this

economy. This definition is useful in its own right (given that the equivalence
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between an Arrow Debreu equilibrium and a sequential markets equilibrium

continues to apply), but also prepares the definition of a recursive competitive

equilibrium in the next subsection.

In a sequential markets equilibrium households (who own the capital

stock) take sequences of wages and interest rates as given and in every pe-

riod chooses consumption and capital to be brought into tomorrow. In every

period the consumption/investment good is the numeraire an its price nor-

malized to 1. Thus the representative household solves

max

{ct,kt+1}1t=0

1X

t=0

�tU (ct) (3.18)

s.t.

ct + kt+1 � (1� �)kt = wt + rtkt
ct, kt+1 � 0

k0 given

Firms solve a sequence of static problems (since households, not firms own

the capital stock). Taking wages and rental rates of capital as given the

firm’s problem is given as

max

kt,nt�0
F (kt, nt)� wtnt � rtkt. (3.19)

Thus we can define a sequential markets equilibrium as

Definition 14 A sequential markets equilibrium is a sequence of prices {wt, rt}1t=0,
allocations for the representative household {ct, ks

t+1}1t=0 and allocations for
the representative firm {nd

t , k
d
t }1t=0 such that

1. Given k0 and {wt, rt}1t=0, allocations for the representative household
{ct, ks

t+1}1t=0 solve the household maximization problem (3.18)

2. For each t � 0, given (wt, rt) the firm allocation (nd
t , k

d
t ) solves the

firms’ maximization problem (3.19).

3. Markets clear: for all t � 0

nd
t = 1

kd
t = ks

t

F (kd
t , n

d
t ) = ct + ks

t+1 � (1� �)ks
t
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Note that the notation implicitly uses that ks
0 = k0. The characterization

of equilibrium allocations and prices is identical to that of the Arrow-Debreu

equilibrium.

16
In particular, once we have solved for a Pareto-optimal allo-

cation, it can straightforwardly be decentralized as a SM equilibrium

3.3.4 Recursive Competitive Equilibrium

We have argued that in general the social planner problem needs to be solved

recursively. In models where the equilibrium is not Pareto-e�cient and it is

not straightforward to solve in sequential or Arrow-Debreu formulation one

often proceeds as follows. First, one makes the dynamic decision problems

(here only the household problem is dynamic) recursive and then defines and

computes a Recursive Competitive Equilibrium. While this is not strictly

necessary for the neoclassical growth model (since we can obtain the equilib-

rium from the social planner problem) we now want to show how to define a

recursive competitive equilibrium in this economy.

A useful starting point is typically the sequential formulation of the prob-

lem. The first question is what are the appropriate state variables for the

household, that is, what is the minimal information the household requires to

solve its dynamic decision problem from today on. Certainly the households

own capital stock at the beginning of the period, k. In addition, the house-

hold needs to know w and r, which in turn are determined by the marginal

products of the aggregate production function, evaluated at the aggregate
capital stock K and labor supply N = 1. While it may seem redundant

to distinguish k and K (they are surely intimately related in equilibrium)

it is absolutely crucial to do so in order to avoid mistakes when solving the

household recursive problem. Thus the state variables of the household are

given by (k,K) and the control variables are today’s consumption c and the

capital stock being brought into tomorrow, k0.

The Bellman equation characterizing the household problem is then given

16Note that we have taken care of the need for a no Ponzi condition by requiring that
kt+1 � 0.
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by

v(k,K) = max

c,k0�0
{U(c) + �v(k0, K 0

)} (3.20)

s.t.

c+ k0
= w(K) + (1 + r(K)� �)k

K 0
= H(K)

The last equation is called the aggregate law of motion: the (as of yet un-

known) function H describes how the aggregate capital stock evolves between

today and tomorrow, which the household needs to know, given that K 0
en-

ters the value function tomorrow. It now is clear why we need to distinguish

k and K. Without that distinction the household would perceive that by

choosing k0
it would a↵ect future prices w(k0

) and r(k0
). While this is true

in equilibrium, by our competitive behavior assumption it is exactly this in-

fluence the household does not take into account when making decisions. To

clarify this the (k,K) notation is necessary. The solution of the household

problem is given by a value function v and two policy functions c = C(k,K)

and k0
= G(k,K).

On the firm side we could certainly formulate the maximization prob-

lem and define optimal policy functions, but since there is nothing dynamic

about the firm problem we will go ahead and use the firm’s first order condi-

tions, evaluated at the aggregate capital stock, to define the wage and return

functions

w(K) = Fl(K, 1) (3.21)

r(K) = Fk(K, 1). (3.22)

We then have the following definition

Definition 15 A recursive competitive equilibrium is a value function v :

R2
+ ! R and policy functions C,G : R2

+ ! R+ for the representative house-
hold, pricing functions w, r : R+ ! R+ and an aggregate law of motion
H : R+ ! R+ such that

1. Given the functions w, r and H, the value function v solves the Bellman
equation (3.20) and C,G are the associated policy functions.

2. The pricing functions satisfy (3.21)-(3.22).
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3. Consistency
H(K) = G(K,K)

4. For all K 2 R+

C(K,K) +G(K,K) = F (K, 1) + (1� �)K

The one condition that is not straightforward is the consistency condition

3. It simply states that the law of motion for the aggregate capital stock is

consistent with the household capital accumulation decision as the house-

holds’ individual asset holdings coincide with the aggregate capital stock.

As with the social planner problem we hope to prove that the recursive

formulation of the household problem is equivalent to the sequential formu-

lation, so that by solving the former (which is computationally feasible) we

also have solved the latter (which is the problem we are interested in, but

can in general not solve). But as before it requires a proof that asserting this

equivalence is in fact justified. This equivalence result between the sequential

and the recursive problem is (again, as before) nothing else but the principle

of optimality which we discuss in generality in chapter 5.1.

3.4 Mapping the Model to Data: Calibration

So far we have studied the theoretical properties of the neoclassical growth

model and described how to solve for equilibria and socially e�cient alloca-

tions numerically, for given values of the parameters. In the final section of

this chapter we discuss a simple method to select (estimate) these parameters

in practice, so that the model can be used for a quantitative analysis of the

real world and for counterfactual analysis.

The method we describe is called calibration. The idea of this method

is to first choose a set of empirical facts that the model should match. The

parameters of the model are then selected so that the equilibrium allocations

and prices implied by the model matches these facts. Evidently the fact that

the model fits these empirical observations cannot be treated as success of the

model. To argue that the model is useful requires the empirical evaluation of

the model predictions along dimensions the model was it not calibrated to.

Before choosing parameters we specify functional forms of the period

utility function and production function. We select a CRRA utility function
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to enable the model to possess a balanced growth path and a Cobb-Douglas

production function for reasons clarified below.

U(c) =

c1�� � 1

1� �

F (K,N) = K↵
⇥
(1 + g)tN

⇤1�↵

The model is then fully specified by the technology parameters (↵, �, g), the
demographics parameter n, and the preference parameters (�, �).

Since the neoclassical growth model is meant to explain long-run growth

we choose as empirical targets long run averages of particular variables in

U.S. data and choose the six parameters such that the long run equilibrium

of the model (the balanced growth path, BGP) matches these facts. In order

to make this procedure operational we first have to take a stance on how

long a time period lasts in the model. We choose the length of the period as

one year.

The first set of parameters in the model can be chosen directly from the

data. In the model the long run population growth rate is (by assumption)

n. For U.S. the long run annual average population growth rate for the last

century is about 1.1%. Thus we choose n = 0.011. Similarly, in the BGP the

growth rate of output (GDP) per capita is given by g. In the data, per capita

GDP has grown at an average annual rate of about 1.8%. Consequently we

select g = 0.018.
For the remaining parameters we use equilibrium relationships to inform

their choice. In equilibrium the wage equals the marginal product of labor,

wt = (1� ↵)K↵
t N

�↵
t

⇥
(1 + g)t

⇤1�↵

Thus the labor share of income is given by

wtNt

Yt

= 1� ↵.

Note that this fact holds not only in the BGP, but in every period.

17
In

U.S. the labor share of income has averaged about 2/3, and thus we choose

↵ = 1/3.

17Note that the only production function with CRTS that also has constant factor
shares (independent of the level of inputs) is the Cobb-Douglas production function which
explains both our choice as well as its frequent use. Also note that this production function
has a constant elasticity of substitution between capital and labor inputs, and that this
elasticity of substitution equals 1.
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In order to calibrate the depreciation rate � we use the relationship be-

tween gross investment and the capital stock:

It = Kt+1 � (1� �)Kt

= (1 + n)t+1
(1 + g)t+1

˜kt+1 � (1� �)(1 + n)t(1 + g)t˜kt
= [(1 + n)(1 + g)� (1� �)] (1 + n)t(1 + g)t˜k

= [(1 + n)(1 + g)� (1� �)]Kt

Thus the investment-capital ratio in the BGP is given by

It
Kt

=

It/Yt

Kt/Yt

= [(1 + n)(1 + g)� (1� �)] ⇡ n+ g + �

In the data the share of investment in GDP averages about I/Y ⇡ 0.2 and

the capital-output ratio averages K/Y ⇡ 3. Using the selections g = 1.8%
and n = 1.1% from above then yields � ⇡ 4%.

Finally, to pin down the preference parameters we turn to the remaining

key equilibrium condition, the Euler equation for the representative house-

hold (see (3.12)). With CRRA utility and growth it reads as

(1 + n)(1 + g) (c̃t)
��

= (1 + rt+1 � �) ˜� (c̃t+1)
��

(3.23)

In the BGP

(1 + n)(1 + g) = (1 + r � �)�(1 + g)1��

�(1 + g)��
=

1 + n

1 + r � �
(3.24)

Now we note that in the competitive equilibrium the rental rate on capital

is given by

rt = ↵K↵�1
t

⇥
(1 + g)tNt

⇤1�↵
= ↵

Yt

Kt

We have already chosen ↵ = 0.33 and targeted a capital-output ratio of

K/Y = 3. The rental rate is then given by r = 0.33/3 = 0.11 and real

interest rate by r � � = 7%.
Given n = 1.1% and g = 1.8% and r � � = 7% equation (3.24) provides

a relationship between the preference parameters � and �:

�(1.018)��
= 0.944.
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First we note that in the absence of growth, g = 0, this relationship uniquely

pins down �, but contains no information about �. If g > 0, the parameters

� and � are only jointly determined. In models without risk the typical

approach to deal with this problem is to choose � based on information

about the IES

1
�
outside the model.

18

One can estimate an equation of the form (3.23), preferably after having

taken logs, with aggregate consumption data. Doing so Hall (1982) finds

1
�
= 0.1. One could do the same using micro household data, which Attanasio

(and a large subsequent literature) has done with various coauthors in several

important papers (1993, 1995) and find a range

1
�
2 [0.3, 0.8], and possibly

higher values for particular groups. Finally, Lucas argues that cross-country

di↵erences in g are large, relative to cross-country di↵erences in r � � (and

n). Thus, conditional on all countries sharing same preference parameters

relation, condition (3.24) suggests a value for the IES of

1
�
� 1. If we take

� = 1 (log-case), then � = 0.961 (i.e. ⇢ = 3.9%). We summarize our

preferred calibration of the model in the following table.

Calibration: Summary
Param. Value Target

g 1.8% g in Data

n 1.1% n in Data

↵ 0.33

wN
Y

� 4%

I/Y
K/Y

� 1 Outside Evid.

� 0.961 K/Y

The calibration approach to select parameter values is frequently used in

business cycle analysis. Once we have augmented the model with sources

for fluctuations (e.g. technology shocks) as we will do in chapter 6.4, the

parameters of the model are chosen such that the model replicates long run

growth observations, as just discussed. It is then evaluated based on its

ability to generate business cycle fluctuations of plausible size and length,

as well as the appropriate co-movement of the economic variables of interest

(e.g. productivity, output, investment, consumption and hours worked).

18In models with risk � is not only a measure of the IES, but also of risk aversion and
return (prices) of risky assets might provide additional information that helps to pin down
� with equilibrium relationships of the model.
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Chapter 4

Mathematical Preliminaries

We want to study functional equations of the form

v(x) = max

y2�(x)
{F (x, y) + �v(y)}

where F is the period return function (such as the utility function) and � is

the constraint set. Note that for the neoclassical growth model x = k, y = k0

and F (k, k0
) = U(f(k)� k0

) and �(k) = {k0 2 R :0  k  f(k)}
In order to so we define the following operator T

(Tv) (x) = max

y2�(x)
{F (x, y) + �v(y)}

This operator T takes the function v as input and spits out a new function Tv.
In this sense T is like a regular function, but it takes as inputs not scalars

z 2 R or vectors z 2 Rn, but functions v from some subset of possible

functions. A solution to the functional equation is then a fixed point of this

operator, i.e. a function v⇤ such that

v⇤ = Tv⇤

We want to find out under what conditions the operator T has a fixed point

(existence), under what conditions it is unique and under what conditions

we can start from an arbitrary function v and converge, by applying the

operator T repeatedly, to v⇤. More precisely, by defining the sequence of

functions {vn}1n=0 recursively by v0 = v and vn+1 = Tvn we want to ask

under what conditions limn!1 vn = v⇤.

87
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In order to make these questions (and the answers to them) precise we

have to define the domain and range of the operator T and we have to define

what we mean by lim . This requires the discussion of complete metric spaces.

In the next subsection I will first define what a metric space is and then what

makes a metric space complete.

Then I will state and prove the contraction mapping theorem. This the-

orem states that an operator T, defined on a metric space, has a unique

fixed point if this operator T is a contraction (I will obviously first define

what a contraction is). Furthermore it assures that from any starting guess

v repeated applications of the operator T will lead to its unique fixed point.

Finally I will prove a theorem, Blackwell’s theorem, that provides su�-

cient condition for an operator to be a contraction. We will use this theorem

to prove that for the neoclassical growth model the operator T is a contrac-

tion and hence the functional equation of our interest has a unique solution.

4.1 Complete Metric Spaces

Definition 16 A metric space is a set S and a function d : S⇥S ! R such
that for all x, y, z 2 S

1. d(x, y) � 0

2. d(x, y) = 0 if and only if x = y

3. d(x, y) = d(y, x)

4. d(x, z)  d(x, y) + d(y, z)

The function d is called a metric and is used to measure the distance

between two elements in S. The third property is usually referred to as sym-

metry, and the fourth property as triangle inequality (because of its geometric

interpretation in R Examples of metric spaces (S, d) include1

1A function f : X ! R is said to be bounded if there exists a constant K > 0 such
that |f(x)| < K for all x 2 X.

Let S be any subset of R. A number u 2 R is said to be an upper bound for the set S
if s  u for all s 2 S. The supremum of S, sup(S) is the smallest upper bound of S.
Every set in R that has an upper bound has a supremum (imposed by the completeness

axiom). For sets that are unbounded above some people say that the supremum does not
exist, others write sup(S) = 1. We will follow the second convention.
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Example 17 S = R with metric d(x, y) = |x� y|

Example 18 S = R with metric d(x, y) =

⇢
1 if x 6= y
0 otherwise

Example 19 S = l1 = {x = {x}1t=0 |xt 2 R, all t � 0 and supt |xt| < 1}
with metric d(x, y) = supt |xt � yt|

Example 20 Let X ✓ Rl and S = C(X) be the set of all continuous and
bounded functions f : X ! R. Define the metric d : C(X) ⇥ C(X) ! R as
d(f, g) = supx2X |f(x)� g(x)|. Then (S, d) is a metric space

A few remarks: the space l1 (with corresponding norm) will be important

when we discuss the welfare theorems as naturally consumption allocations

for models with infinitely lived consumers are infinite sequences. Why we

want to require these sequences to be bounded will become clearer later.

The space C(X) with norm d as defined above will be used immediately

as we will define the domain of our operator T to be C(X), i.e. T uses as

inputs continuous and bounded functions.

Let us prove that some of the examples are indeed metric spaces. For the

first example the result is trivial.

Claim 21 S = R with metric d(x, y) =

⇢
1 if x 6= y
0 otherwise

is a metric space

Proof. We have to show that the function d satisfies all three proper-

ties in the definition. The first three properties are obvious. For the forth

property: if x = z, the result follows immediately. So suppose x 6= z.
Then d(x, z) = 1. But then either y 6= x or y 6= z (or both), so that

d(x, y) + d(y, z) � 1

Claim 22 l1 together with the sup-metric is a metric space

Also note that sup(S) = max(S), whenever the latter exists. What the sup buys us is
that it always exists even when the max does not. A simle example

S =

⇢
� 1

n

: n 2 N

�

For this example sup(S) = 0 whereas max(S) does not exist.
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Proof. Take arbitrary x, y, z 2 l1. From the basic triangle inequality

on R we have that |xt � yt|  |xt| + |yt|. Hence, since supt |xt| < 1 and

supt |yt| < 1, we have that supt |xt�yt| < 1. Property 1 is obvious. If x = y
(i.e. xt = yt for all t), then |xt � yt| = 0 for all t, hence supt |xt � yt| = 0.
Suppose x 6= y. Then there exists T such that xT 6= yT , hence |xT � yT | > 0,
hence supt |xt � yt| > 0

Property 3 is obvious since |xt � yt| = |yt � xt|, all t. Finally for property

4. we note that for all t

|xt � zt|  |xt � yt|+ |yt � zt|

Since this is true for all t, we can apply the sup to both sides to obtain the

result (note that the sup on both sides is finite).

Claim 23 C(X) together with the sup-norm is a metric space

Proof. Take arbitrary f, g 2 C(X). f = g means that f(x) = g(x) for all
x 2 X. Since f, g are bounded, supx2X |f(x)| < 1 and supx2X |f(x)| < 1,
so supx2X |f(x) � g(x)| < 1. Property 1. through 3. are obvious and for

property 4. we use the same argument as before, including the fact that

f, g 2 C(X) implies that supx2X |f(x)� g(x)| < 1.

4.2 Convergence of Sequences

The next definition will make precise the meaning of statements of the form

limn!1 vn = v⇤. For an arbitrary metric space (S, d) we have the following

definition.

Definition 24 A sequence {xn}1n=0 with xn 2 S for all n is said to converge
to x 2 S, if for every " > 0 there exists a N" 2 N such that d(xn, x) < " for
all n � N". In this case we write limn!1 xn = x.

This definition basically says that a sequence {xn}1n=0 converges to a point

if we, for every distance " > 0 we can find an index N" so that the sequence of

xn is not more than " away from x after the N" element of the sequence. Also

note that, in order to verify that a sequence converges, it is usually necessary

to know the x to which it converges in order to apply the definition directly.
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Example 25 Take S = R with d(x, y) = |x� y|. Define {xn}1n=0 by xn =

1
n
.

Then limn!1 xn = 0. This is straightforward to prove, using the definition.
Take any " > 0. Then d(xn, 0) =

1
n
. By taking N" =

2
"
we have that for

n � N", d(xn, 0) =
1
n
 1

N"
=

"
2 < " (if N" =

2
"
is not an integer, take the

next biggest integer).

For easy examples of sequences it is no problem to guess the limit. Note

that the limit of a sequence, if it exists, is always unique (you should prove

this for yourself). For not so easy examples this may not work. There is an

alternative criterion of convergence, due to Cauchy.

2

Definition 26 A sequence {xn}1n=0 with xn 2 S for all n is said to be a
Cauchy sequence if for each " > 0 there exists a N" 2 N such that d(xn, xm) <
" for all n,m � N"

Hence a sequence {xn}1n=0 is a Cauchy sequence if for every distance " > 0

we can find an index N" so that the elements of the sequence do not di↵er

by more than by ".

Example 27 Take S = R with d(x, y) = |x� y|. Define {xn}1n=0 by xn =

1
n
.

This sequence is a Cauchy sequence. Again this is straightforward to prove.
Fix " > 0 and take any n,m 2 N. Without loss of generality assume that
m > n. Then d(xn, xm) =

1
n
� 1

m
< 1

n
. Pick N" =

2
"
and we have that for

n,m � N", d(xn, 0) < 1
n
 1

N"
=

"
2 < ". Hence the sequence is a Cauchy

sequence.

So it turns out that the sequence in the last example both converges and

is a Cauchy sequence. This is not an accident. In fact, one can prove the

following

Theorem 28 Suppose that (S, d) is a metric space and that the sequence
{xn}1n=0 converges to x 2 S. Then the sequence {xn}1n=0 is a Cauchy sequence.

Proof. Since {xn}1n=0 converges to x, there existsM "
2
such that d(xn, x) <

"
2 for all n � M "

2
. Therefore if n,m � N" we have that d(xn, xm)  d(xn, x)+

d(xm, x) <
"
2 +

"
2 = " (by the definition of convergence and the triangle in-

equality). But then for any " > 0, pick N" = M "
2
and it follows that for all

n,m � N" we have d(xn, xm) < "

2Augustin-Louis Cauchy (1789-1857) was the founder of modern analysis. He wrote
about 800 (!) mathematical papers during his scientific life.
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Example 29 Take S = R with d(x, y) =

⇢
1 if x 6= y
0 otherwise

. Define {xn}1n=0

by xn =

1
n
. Obviously d(xn, xm) = 1 for all n,m 2 N. Therefore the sequence

is not a Cauchy sequence. It then follows from the preceding theorem (by
taking the contrapositive) that the sequence cannot converge. This example
shows that, whenever discussing a metric space, it is absolutely crucial to
specify the metric.

This theorem tells us that every convergent sequence is a Cauchy se-

quence. The reverse does not always hold, but it is such an important prop-

erty that when it holds, it is given a particular name.

Definition 30 A metric space (S, d) is complete if every Cauchy sequence
{xn}1n=0 with xn 2 S for all n converges to some x 2 S.

Note that the definition requires that the limit x has to lie within S.
We are interested in complete metric spaces since the Contraction Mapping

Theorem deals with operators T : S ! S, where (S, d) is required to be

a complete metric space. Also note that there are important examples of

complete metric spaces, but other examples where a metric space is not

complete (and for which the Contraction Mapping Theorem does not apply).

Example 31 Let S be the set of all continuous, strictly decreasing functions
on [1, 2] and let the metric on S be defined as d(f, g) = supx2[1,2] |f(x)�g(x)|.
I claim that (S, d) is not a complete metric space. This can be proved by an
example of a sequence of functions {fn}1n=0 that is a Cauchy sequence, but
does not converge within S. Define fn : [0, 1] ! R by fn(x) =

1
nx
. Obviously

all fn are continuous and strictly decreasing on [1, 2],

hence fn 2 S for all n. Let us first prove that this sequence is a Cauchy
sequence. Fix " > 0 and take N" =

2
"
. Suppose that m,n � N" and without
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loss of generality assume that m > n. Then

d(fn, fm) = sup

x2[1,2]

����
1

nx
� 1

mx

����

= sup

x2[1,2]

1

nx
� 1

mx

= sup

x2[1,2]

m� n

mnx

=

m� n

mn
=

1� n
m

n

 1

n
 1

N"

=

"

2

< "

Hence the sequence is a Cauchy sequence. But since for all x 2 [1, 2],
limn!1 fn(x) = 0, the sequence converges to the function f, defined as f(x) =
0, for all x 2 [1, 2]. But obviously, since f is not strictly decreasing, f /2 S.
Hence (S, d) is not a complete metric space. Note that if we choose S to be
the set of all continuous and decreasing (or increasing) functions on R, then
S, together with the sup-norm, is a complete metric space.

Example 32 Let S = RL and d(x, y) = L

qPL
l=1 |xl � yl|L. (S, d) is a com-

plete metric space. This is easily proved by proving the following three lem-
mata (which is left to the reader).

1. Every Cauchy sequence {xn}1n=0 in RL is bounded

2. Every bounded sequence {xn}1n=0 in RL has a subsequence {xni
}1i=0 con-

verging to some x 2 RL (Bolzano-Weierstrass Theorem)

3. For every Cauchy sequence {xn}1n=0 in RL, if a subsequence {xni
}1i=0

converges to x 2 RL, then the entire sequence {xn}1n=0 converges to
x 2 RL.

Example 33 This last example is very important for the applications we are
interested in. Let X ✓ RL and C(X) be the set of all bounded continuous
functions f : X ! R with d being the sup-norm. Then (C(X), d) is a
complete metric space.
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Proof. (This follows SLP, pp. 48) We already proved that (C(X), d) is a
metric space. Now we want to prove that this space is complete. Let {fn}1n=0

be an arbitrary sequence of functions in C(X) which is Cauchy. We need to

establish the existence of a function f 2 C(X) such that for all " > 0 there

exists N" satisfying supx2X |fn(x)� f(x)| < " for all n � N".
We will proceed in three steps: a) find a candidate for f, b) establish

that the sequence {fn}1n=0 converges to f in the sup-norm and c) show that

f 2 C(X).

1. Since {fn}1n=0 is Cauchy, for each " > 0 there exists M" such that

supx2X |fn(x) � fm(x)| < " for all n,m � M". Now fix a particular

x 2 X. Then {fn(x)}1n=0 is just a sequence of numbers. Now

|fn(x)� fm(x)|  sup

y2X
|fn(y)� fm(y)| < "

Hence the sequence of numbers {fn(x)}1n=0 is a Cauchy sequence in

R. Since R is a complete metric space, {fn(x)}1n=0 converges to some

number, call it f(x). By repeating this argument for all x 2 X we derive

our candidate function f ; it is the pointwise limit of the sequence of

functions {fn}1n=0.

2. Now we want to show that {fn}1n=0 converges to f as constructed above.

Hence we want to argue that d(fn, f) goes to zero as n goes to infinity.

Fix " > 0. Since {fn}1n=0 is Cauchy, it follows that there exists N"

such that d(fn, fm) < " for all n,m � N". Now fix x 2 X. For any

m � n � N" we have (remember that the norm is the sup-norm)

|fn(x)� f(x)|  |fn(x)� fm(x)|+ |fm(x)� f(x)|
 d(fn, fm) + |fm(x)� f(x)|
 "

2

+ |fm(x)� f(x)|

But since {fn}1n=0 converges to f pointwise, we have that |fm(x) �
f(x)| < "

2 for all m � N"(x), where N"(x) is a number that may (and

in general does) depend on x. But then, since x 2 X was arbitrary,

|fn(x) � f(x)| < " for all n � N" (the key is that this N" does not
depend on x). Therefore supx2X |fn(x) � f(x)| = d(fn, f)  " and

hence the sequence {fn}1n=0 converges to f.
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3. Finally we want to show that f 2 C(X), i.e. that f is bounded and

continuous. Since {fn}1n=0 lies in C(X), all fn are bounded, i.e. there

is a sequence of numbers {Kn}1n=0 such that supx2X |fn(x)|  Kn. But
by the triangle inequality, for arbitrary n

sup

x2X
|f(x)| = sup

x2X
|f(x)� fn(x) + fn(x)|

 sup

x2X
|f(x)� fn(x)|+ sup

x2X
|fn(x)|

 sup

x2X
|f(x)� fn(x)|+Kn

But since {fn}1n=0 converges to f, there existsN" such that supx2X |f(x)�
fn(x)| < " for all n � N". Fix an " and take K = KN" + 2". It is ob-
vious that supx2X |f(x)|  K. Hence f is bounded. Finally we prove

continuity of f. Let us choose the metric on RL
to be ||x � y|| =

L

qPL
l=1 |xl � yl|L. We need to show that for every " > 0 and every

x 2 X there exists a �(", x) > 0 such that if ||x � y|| < �(", x) then

|f(x)�f(y)| < ", for all x, y 2 X. Fix " and x. Pick a k large enough so

that d(fk, f) <
"
3 (which is possible as {fn}1n=0 converges to f). Choose

�(", x) > 0 such that ||x � y|| < �(", x) implies |fk(x) � fk(y)| < "
3 .

Since all fn 2 C(X), fk is continuous and hence such a �(", x) > 0

exists. Now

|f(x)� f(y)|  |f(x)� fk(x)|+ |fk(x)� fk(y)|+ |fk(y)� f(y)|
 d(f, fk) + |fk(x)� fk(y)|+ d(fk, f)

 "

3

+

"

3

+

"

3

= "

4.3 The Contraction Mapping Theorem

Now we are ready to state the theorem that will give us the existence and

uniqueness of a fixed point of the operator T, i.e. existence and uniqueness

of a function v⇤ satisfying v⇤ = Tv⇤. Let (S, d) be a metric space. Just to

clarify, an operator T (or a mapping) is just a function that maps elements

of S into some other space. The operator that we are interested in maps

functions into functions, but the results in this section apply to any metric

space. We start with a definition of what a contraction mapping is.
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Definition 34 Let (S, d) be a metric space and T : S ! S be a function
mapping S into itself. The function T is a contraction mapping if there
exists a number � 2 (0, 1) satisfying

d(Tx, Ty)  �d(x, y) for all x, y 2 S

The number � is called the modulus of the contraction mapping

A geometric example of a contraction mapping for S = [0, 1], d(x, y) =

|x� y| is contained in SLP, p. 50. Note that a function that is a contraction

mapping is automatically a continuous function, as the next lemma shows

Lemma 35 Let (S, d) be a metric space and T : S ! S be a function map-
ping S into itself. If T is a contraction mapping, then T is continuous.

Proof. Remember from the definition of continuity we have to show

that for all s0 2 S and all " > 0 there exists a �(", s0) such that whenever

s 2 S, d(s, s0) < �(", s0), then d(Ts, Ts0) < ". Fix an arbitrary s0 2 S and

" > 0 and pick �(", s0) = ". Then

d(Ts, Ts0)  �d(s, s0)  ��(", s0) = �" < "

We now can state and prove the contraction mapping theorem. Let by

vn = T nv0 2 S denote the element in S that is obtained by applying the

operator T n-times to v0, i.e. the n-th element in the sequence starting with

an arbitrary v0 and defined recursively by vn = Tvn�1 = T (Tvn�2) = · · · =
T nv0. Then we have

Theorem 36 Let (S, d) be a complete metric space and suppose that T :

S ! S is a contraction mapping with modulus �. Then a) the operator T has
exactly one fixed point v⇤ 2 S and b) for any v0 2 S, and any n 2 N we have

d(T nv0, v
⇤
)  �nd(v0, v

⇤
)

A few remarks before the proof. Part a) of the theorem tells us that there

is a v⇤ 2 S satisfying v⇤ = Tv⇤ and that there is only one such v⇤ 2 S. Part
b) asserts that from any starting guess v0, the sequence {vn}1n=0 as defined

recursively above converges to v⇤ at a geometric rate of �. This last part is
important for computational purposes as it makes sure that we, by repeatedly
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applying T to any (as crazy as can be) initial guess v0 2 S, will eventually
converge to the unique fixed point and it gives us a lower bound on the speed

of convergence. But now to the proof.

Proof. First we prove part a) Start with an arbitrary v0. As our candidate
for a fixed point we take v⇤ = limn!1 vn. We first have to establish that the

sequence {vn}1n=0 in fact converges to a function v⇤. We then have to show

that this v⇤ satisfies v⇤ = Tv⇤ and we then have to show that there is no

other v̂ that also satisfies v̂ = T v̂
Since by assumption T is a contraction

d(vn+1, vn) = d(Tvn, T vn�1)  �d(vn, vn�1)

= �d(Tvn�1, T vn�2)  �2d(vn�1, vn�2)

= · · · = �nd(v1, v0)

where we used the way the sequence {vn}1n=0 was constructed, i.e. the fact

that vn+1 = Tvn. For any m > n it then follows from the triangle inequality

that

d(vm, vn)  d(vm, vm�1) + d(vm�1, vn)

 d(vm, vm�1) + d(vm�1, vm�2) + · · ·+ d(vn+1, vn)

 �md(v1, v0) + �m�1d(v1, v0) + · · · �nd(v1, v0)

= �n
�
�m�n�1

+ · · ·+ � + 1

�
d(v1, v0)

 �n

1� �
d(v1, v0)

By making n large we can make d(vm, vn) as small as we want. Hence the

sequence {vn}1n=0 is a Cauchy sequence. Since (S, d) is a complete metric

space, the sequence converges in S and therefore v⇤ = limn!1 vn is well-

defined.

Now we establish that v⇤ is a fixed point of T, i.e. we need to show that

Tv⇤ = v⇤. But

Tv⇤ = T
⇣
lim

n!1
vn
⌘
= lim

n!1
T (vn) = lim

n!1
vn+1 = v⇤

Note that the fact that T (limn!1 vn) = limn!1 T (vn) follows from the con-

tinuity of T.3

3Almost by definition. Since T is continuous for every " > 0 there exists a �(") such
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Now we want to prove that the fixed point of T is unique. Suppose there

exists another v̂ 2 S such that v̂ = T v̂ and v̂ 6= v⇤. Then there exists c > 0

such that d(v̂, v⇤) = a. But

0 < a = d(v̂, v⇤) = d(T v̂, Tv⇤)  �d(v̂, v⇤) = �a

a contradiction. Here the second equality follows from the fact that we

assumed that both v̂, v⇤ are fixed points of T and the inequality follows from

the fact that T is a contraction.

We prove part b) by induction. For n = 0 (using the convention that

T 0v = v) the claim automatically holds. Now suppose that

d(T kv0, v
⇤
)  �kd(v0, v

⇤
)

We want to prove that

d(T k+1v0, v
⇤
)  �k+1d(v0, v

⇤
)

But

d(T k+1v0, v
⇤
) = d(T

�
T kv0

�
, T v⇤)  �d(T kv0, v

⇤
)  �k+1d(v0, v

⇤
)

where the first inequality follows from the fact that T is a contraction and

the second follows from the induction hypothesis.

The following corollary, which I will state without proof, will be very

useful in establishing properties (such as continuity, monotonicity, concavity)

of the unique fixed point v⇤ and the associated policy correspondence.

Corollary 37 Let (S, d) be a complete metric space, and let T : S ! S be a
contraction mapping with fixed point v 2 S. If S 0 is a closed subset of S and
T (S 0

) ✓ S 0, then v 2 S 0. If in addition T (S 0
) ✓ S 00 ✓ S 0, then v 2 S 00.

The Contraction Theorem is is extremely useful in order to establish that

our functional equation of interest has a unique fixed point. It is, however,

not very operational as long as we don’t know how to determine whether a

given operator is a contraction mapping. There is some good news, however.

that d(vn � v

⇤) < �(") implies d(T (vn) � T (v⇤)) < ". Hence the sequence {T (vn)}1n=0

converges and limn!1 T (vn) is well-defined. We showed that limn!1 vn = v

⇤
. Hence

both limn!1 T (vn) and limn!1 vn are well-defined. Then obviously limn!1 T (vn) =
T (v⇤) = T (limn!1 vn).
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Blackwell, in 1965 provided su�cient conditions for an operator to be a

contraction mapping. It turns out that these conditions can be easily checked

in a lot of applications. Since they are only su�cient however, failure of these

conditions does not imply that the operator is not a contraction. In these

cases we just have to look somewhere else. Here is Blackwell’s theorem.

Theorem 38 Let X ✓ RL and B(X) be the space of bounded functions
f : X ! R with the d being the sup-norm. Let T : B(X) ! B(X) be an
operator satisfying

1. Monotonicity: If f, g 2 B(X) are such that f(x)  g(x) for all x 2 X,
then (Tf) (x)  (Tg) (x) for all x 2 X.

2. Discounting: Let the function f + a, for f 2 B(X) and a 2 R+ be
defined by (f + a)(x) = f(x) + a (i.e. for all x the number a is added
to f(x)). There exists � 2 (0, 1) such that for all f 2 B(X), a � 0 and
all x 2 X

[T (f + a)](x)  [Tf ](x) + �a

If these two conditions are satisfied, then the operator T is a contraction
with modulus �.

Proof. In terms of notation, if f, g 2 B(X) are such that f(x)  g(x)
for all x 2 X, then we write f  g. We want to show that if the operator

T satisfies conditions 1. and 2. then there exists � 2 (0, 1) such that for all

f, g 2 B(X) we have that d(Tf, Tg)  �d(f, g).
Fix x 2 X. Then f(x) � g(x)  supy2X |f(y) � g(y)|. But this is true

for all x 2 X. So using our notation we have that f  g + d(f, g) (which

means that for any value of x 2 X, adding the constant d(f, g) to g(x) gives
something bigger than f(x).

But from f  g + d(f, g) it follows by monotonicity that

Tf  T [g + d(f, g)]

 Tg + �d(f, g)

where the last inequality comes from discounting. Hence we have

Tf � Tg  �d(f, g)
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Switching the roles of f and g around we get

�(Tf � Tg)  �d(g, f) = �d(f, g)

(by symmetry of the metric). Combining yields

(Tf) (x)� (Tg) (x)  �d(f, g) for all x 2 X

(Tg) (x)� (Tf) (x)  �d(f, g) for all x 2 X

Therefore

sup

x2X
|(Tf) (x)� (Tg) (x)| = d(Tf, Tg)  �d(f, g)

and T is a contraction mapping with modulus �.
Note that do not require the functions in B(X) to be continuous. It

is straightforward to prove that (B(X), d) is a complete metric space once

we proved that (B(X), d) is a complete metric space. Also note that we

could restrict ourselves to continuous and bounded functions and Blackwell’s

theorem obviously applies. Note however that Blackwells theorem requires

the metric space to be a space of functions, so we lose generality as compared

to the Contraction mapping theorem (which is valid for any complete metric

space). But for our purposes it is key that, once Blackwell’s conditions are

verified we can invoke the CMT to argue that our functional equation of

interest has a unique solution that can be obtained by repeated iterations on

the operator T.
We can state an alternative version of Blackwell’s theorem

Theorem 39 Let X ✓ RL and B(X) be the space of bounded functions
f : X ! R with the d being the sup-norm. Let T : B(X) ! B(X) be an
operator satisfying

1. Monotonicity: If f, g 2 B(X) are such that f(x)  g(x) for all x 2 X,
then (Tf) (x) � (Tg) (x) for all x 2 X.

2. Discounting: Let the function f + a, for f 2 B(X) and a 2 R+ be
defined by (f + a)(x) = f(x) + a (i.e. for all x the number a is added
to f(x)). There exists � 2 (0, 1) such that for all f 2 B(X), a � 0 and
all x 2 X

[T (f � a)](x)  [Tf ](x) + �a

If these two conditions are satisfied, then the operator T is a contraction
with modulus �.
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The proof is identical to the first theorem and hence omitted.

As an application of the mathematical structure we developed let us look

back at the neoclassical growth model. The operator T corresponding to our

functional equation was

Tv(k) = max

0k0f(k)
{U(f(k)� k0

) + �v(k0
)}

Define as our metric space (B[0,1), d) the space of bounded functions on

[0,1) with d being the sup-norm. We want to argue that this operator has a

unique fixed point and we want to apply Blackwell’s theorem and the CMT.

So let us verify that all the hypotheses for Blackwell’s theorem are satisfied.

1. First we have to verify that the operator T maps B[0,1) into itself

(this is very often forgotten). So if we take v to be bounded, since we

assumed that U is bounded, then Tv is bounded. Note that you may

be in big trouble here if U is not bounded.

4

2. How about monotonicity. It is obvious that this is satisfied. Suppose

v  w. Let by gv(k) denote an optimal policy (need not be unique)

corresponding to v. Then for all k 2 (0,1)

Tv(k) = U(f(k)� gv(k)) + �v(gv(k))

 U(f(k)� gv(k)) + �w(gv(k))

 max

0k0f(k)
{U(f(k)� k0

) + �w(k0
)}

= Tw(k)

Even by applying the policy gv(k) (which need not be optimal for the

situation in which the value function is w) gives higher Tw(k) than

Tv(k). Choosing the policy for w optimally does only improve the value

(Tv) (k).

4Somewhat surprisingly, in many applications the problem is that u is not bounded
below; unboundedness from above is sometimes easy to deal with.

We made the assumption that f 2 C

2
f

0
> 0, f 00

< 0, limk&0 f
0(k) = 1 and

limk!1 f

0(k) = 1 � �. Hence there exists a unique k̂ such that f(k̂) = k̂. Hence for
all kt > k̂ we have kt+1  f(kt) < kt. Therefore we can e↵ectively restrict ourselves to
capital stocks in the set [0,max(k0, k̂)]. Hence, even if u is not bounded above we have that
for all feasible paths policies u(f(k) � k

0)  u(f(max(k0, k̂)) < 1, and hence by sticking
a function v into the operator that is bounded above, we get a Tv that is bounded above.
Lack of boundedness from below is a much harder problem in general.
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3. Discounting. This also straightforward

T (v + a)(k) = max

0k0f(k)
{U(f(k)� k0

) + �(v(k0
) + a)}

= max

0k0f(k)
{U(f(k)� k0

) + �v(k0
)}+ �a

= Tv(k) + �a

Hence the neoclassical growth model with bounded utility satisfies the

Su�cient conditions for a contraction and there is a unique fixed point to

the functional equation that can be computed from any starting guess v0 be

repeated application of the T -operator.
One can also prove some theoretical properties of the Howard improve-

ment algorithm using the Contraction Mapping Theorem and Blackwell’s

conditions. Even though we could state the results in much generality, we

will confine our discussion to the neoclassical growth model. Remember that

the Howard improvement algorithm iterates on feasible policies [TBC]

4.4 The Theorem of the Maximum

An important theorem is the theorem of the maximum. It will help us to

establish that, if we stick a continuous function f into our operator T, the
resulting function Tf will also be continuous and the optimal policy function

will be continuous in an appropriate sense.

We are interested in problems of the form

h(x) = max

y2�(x)
{f(x, y)}

The function h gives the value of the maximization problem, conditional on

the state x. We define

G(x) = {y 2 �(x) : f(x, y) = h(x)}

Hence G is the set of all choices y that attain the maximum of f , given

the state x, i.e. G(x) is the set of argmax’es. Note that G(x) need not be

single-valued.

In the example that we study the function f will consist of the sum of

the current return function r and the continuation value v and the constraint
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set describes the resource constraint. The theorem of the maximum is also

widely used in microeconomics. There, most frequently x consists of prices

and income, f is the (static) utility function, the function h is the indirect

utility function, � is the budget set and G is the set of consumption bundles

that maximize utility at x = (p,m).
Before stating the theorem we need a few definitions. Let X, Y be ar-

bitrary sets (in what follows we will be mostly concerned with the situa-

tions in which X and Y are subsets of Euclidean spaces. A correspondence

� : X ) Y maps each element x 2 X into a subset �(x) of Y. Hence the

image of the point x under � may consist of more than one point (in contrast

to a function, in which the image of x always consists of a singleton).

Definition 40 A compact-valued correspondence � : X ) Y is upper-
hemicontinuous at a point x if �(x) 6= ? and if for all sequences {xn} in X
converging to some x 2 X and all sequences {yn} in Y such that yn 2 �(xn)

for all n, there exists a convergent subsequence of {yn} that converges to
some y 2 �(x). A correspondence is upper-hemicontinuous if it is upper-
hemicontinuous at all x 2 X.

A few remarks: by talking about convergence we have implicitly assumed

that X and Y (together with corresponding metrics) are metric spaces. Also,

a correspondence is compact-valued, if for all x 2 X,�(x) is a compact set.

Also this definition requires � to be compact-valued. With this additional

requirement the definition of upper hemicontinuity actually corresponds to

the definition of a correspondence having a closed graph. See, e.g. Mas-Colell

et al. p. 949-950 for details.

Definition 41 A correspondence � : X ) Y is lower-hemicontinuous at
a point x if �(x) 6= ? and if for every y 2 �(x) and every sequence {xn}
in X converging to x 2 X there exists N � 1 and a sequence {yn} in Y
converging to y such that yn 2 �(xn) for all n � N. A correspondence is
lower-hemicontinuous if it is lower-hemicontinuous at all x 2 X.

Definition 42 A correspondence � : X ) Y is continuous if it is both
upper-hemicontinuous and lower-hemicontinuous.

Note that a single-valued correspondence (i.e. a function) that is upper-

hemicontinuous is continuous. Now we can state the theorem of the maxi-

mum.
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Theorem 43 Let X ✓ RL and Y ✓ RM , let f : X⇥Y ! R be a continuous
function, and let � : X ) Y be a compact-valued and continuous correspon-
dence. Then h : X ! R is continuous and G : X ! Y is nonempty,
compact-valued and upper-hemicontinuous.

The proof is somewhat tedious and omitted here (you probably have done

it in micro anyway).



Chapter 5

Dynamic Programming

5.1 The Principle of Optimality

In the last section we showed that under certain conditions, the functional

equation (FE)

v(x) = sup

y2�(x)
{F (x, y) + �v(y)}

has a unique solution which is approached from any initial guess v0 at geo-

metric speed. What we were really interested in, however, was a problem of

sequential form (SP )

w(x0) = sup

{xt+1}1t=0

1X

t=0

�tF (xt, xt+1)

s.t. xt+1 2 �(xt)

x0 2 X given

Note that I replaced max with sup since we have not made any assump-

tions so far that would guarantee that the maximum in either the functional

equation or the sequential problem exists. In this section we want to find out

under what conditions the functions v and w are equal and under what condi-

tions optimal sequential policies {xt+1}1t=0 are equivalent to optimal policies

y = g(x) from the recursive problem, i.e. under what conditions the principle

of optimality holds. It turns out that these conditions are very mild.

In this section I will try to state the main results and make clear what

they mean; I will not prove the results. The interested reader is invited to

105
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consult Stokey and Lucas or Bertsekas. Unfortunately, to make our results

precise additional notation is needed. Let X be the set of possible values

that the state x can take. X may be a subset of a Euclidean space, a set of

functions or something else; we need not be more specific at this point. The

correspondence � : X ) X describes the feasible set of next period’s states

y, given that today’s state is x. The graph of �, A is defined as

A = {(x, y) 2 X ⇥X : y 2 �(x)}
The period return function F : A ! R maps the set of all feasible combi-

nations of today’s and tomorrow’s state into the reals. So the fundamentals

of our analysis are (X,F, �,�). For the neoclassical growth model F and �
describe preferences and X,� describe the technology.

We call any sequence of states {xt}1t=0 a plan. For a given initial condition

x0, the set of feasible plans ⇧(x0) from x0 is defined as

⇧(x0) = {{xt}1t=1 : xt+1 2 �(xt)}
Hence ⇧(x0) is the set of sequences that, for a given initial condition, satisfy

all the feasibility constraints of the economy. We will denote by x̄ a generic

element of ⇧(x0). The two assumptions that we need for the principle of

optimality are basically that for any initial condition x0 the social planner

(or whoever solves the problem) has at least one feasible plan and that the

total return (the total utility, say) from all feasible plans can be evaluated.

That’s it. More precisely we have

Assumption 1: �(x) is nonempty for all x 2 X
Assumption 2: For all initial conditions x0 and all feasible plans x̄ 2

⇧(x0)

lim

n!1

nX

t=0

�tF (xt, xt+1)

exists (although it may be +1 or �1).

Assumption 1 does not require much discussion: we don’t want to deal

with an optimization problem in which the decision maker (at least for some

initial conditions) can’t do anything. Assumption 2 is more subtle. There

are various ways to verify that assumption 2 is satisfied, i.e. various sets of

su�cient conditions for assumption 2 to hold. Assumption 2 holds if

1. F is bounded and � 2 (0, 1). Note that boundedness of F is not

enough. Suppose � = 1 and F (xt, xt+1) =

⇢
1 if t even
�1 if t odd

Obviously F
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is bounded, but since

Pn
t=0 �

tF (xt, xt+1) =

⇢
1 if n even

0 if n odd

, the limit

in assumption 2 does not exist. If � 2 (0, 1) then
Pn

t=0 �
tF (xt, xt+1) =⇢

1� �
n
2
+ �n

if n even

1� �
n
2
if n odd

and therefore limn!1
Pn

t=0 �
tF (xt, xt+1) ex-

ists and equals 1. In general the joint assumption that F is bounded

and � 2 (0, 1) implies that the sequence yn =

Pn
t=0 �

tF (xt, xt+1) is

Cauchy and hence converges. In this case lim yn = y is obviously finite.

2. Define F+
(x, y) = max{0, F (x, y)} and F�

(x, y) = max{0,�F (x, y)}.
Then assumption 2 is satisfied if for all x0 2 X, all x̄ 2 ⇧(x0), either

lim

n!1

nX

t=0

�tF+
(xt, xt+1) < +1 or

lim

n!1

nX

t=0

�tF�
(xt, xt+1) < +1

or both. For example, if � 2 (0, 1) and F is bounded above, then the

first condition is satisfied, if � 2 (0, 1) and F is bounded below then

the second condition is satisfied.

3. Assumption 2 is satisfied if for every x0 2 X and every x̄ 2 ⇧(x0) there

are numbers (possibly dependent on x0, x̄) ✓ 2 (0, 1
�
) and 0 < c < +1

such that for all t
F (xt, xt+1)  c✓t

Hence F need not be bounded in any direction for assumption 2 to be

satisfied. As long as the returns from the sequences do not grow too

fast (at rate higher than

1
�
) we are still fine .

I would conclude that assumption 2 is rather weak (I can’t think of any

interesting economic example where assumption1 is violated, but let me know

if you come up with one). A final piece of notation and we are ready to state

some theorems.

Define the sequence of functions un : ⇧(x0) ! R by

un(x̄) =
nX

t=0

�tF (xt, xt+1)
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For each feasible plan un gives the total discounted return (utility) up until

period n. If assumption 2 is satisfied, then the function u : ⇧(x0) ! R̄

u(x̄) = lim

n!1

nX

t=0

�tF (xt, xt+1)

is also well-defined, since under assumption 2 the limit exists. The range of

u is R̄, the extended real line, i.e. R̄ = R [ {�1,+1} since we allowed the

limit to be plus or minus infinity. From the definition of u it follows that

under assumption 2

w(x0) = sup

x̄2⇧(x0)
u(x̄)

Note that by construction, whenever w exists, it is unique (since the supre-

mum of a set is always unique). Also note that the way I have defined w
above only makes sense under assumption 1. and 2., otherwise w is not

well-defined.

We have the following theorem, stating the principle of optimality.

Theorem 44 Suppose (X,�, F, �) satisfy assumptions 1. and 2. Then

1. the function w satisfies the functional equation (FE)

2. if for all x0 2 X and all x̄ 2 ⇧(x0) a solution v to the functional
equation (FE) satisfies

lim

n!1
�nv(xn) = 0 (5.1)

then v = w

I will skip the proof, but try to provide some intuition. The first result

states that the supremum function from the sequential problem (which is

well-defined under assumption 1. and 2.) solves the functional equation.

This result, although nice, is not particularly useful for us. We are interested

in solving the sequential problem and in the last section we made progress

in solving the functional equation (not the other way around).

But result 2. is really key. It states a condition under which a solution

to the functional equation (which we know how to compute) is a solution

to the sequential problem (the solution of which we desire). Note that the

functional equation (FE) may (or may not) have several solution. We haven’t
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made enough assumptions to use the CMT to argue uniqueness. However,

only one of these potential several solutions can satisfy (5.1) since if it does,

the theorem tells us that it has to equal the supremum function w (which

is necessarily unique). The condition (5.1) is somewhat hard to interpret

(and SLP don’t even try), but think about the following. We saw in the

first lecture that for infinite-dimensional optimization problems like the one

in (SP ) a transversality condition was often necessary and (even more often)

su�cient (jointly with the Euler equation). The transversality condition

rules out as suboptimal plans that postpone too much utility into the distant

future. There is no equivalent condition for the recursive formulation (as this

formulation is basically a two period formulation, today vs. everything from

tomorrow onwards). Condition (5.1) basically requires that the continuation

utility from date n onwards, discounted to period 0, should vanish in the

time limit. In other words, this puts an upper limit on the growth rate of

continuation utility, which seems to substitute for the TVC. It is not clear

to me how to make this intuition more rigorous, though.

A simple, but quite famous example, shows that the condition (5.1) has
some bite. Consider the following consumption problem of an infinitely lived

household. The household has initial wealth x0 2 X = R. He can borrow or

lend at a gross interest rate 1 + r = 1
�
> 1. So the price of a bond that pays

o↵ one unit of consumption is q = �. There are no borrowing constraints, so

the sequential budget constraint is

ct + �xt+1  xt

and the nonnegativity constraint on consumption, ct � 0. The household

values discounted consumption, so that her maximization problem is

w(x0) = sup

{(ct,xt+1)}1t=0

1X

t=0

�tct

s.t. 0  ct  xt � �xt+1

x0 given

Since there are no borrowing constraint, the consumer can assure herself

infinite utility by just borrowing an infinite amount in period 0 and then

rolling over the debt by even borrowing more in the future. Such a strategy

is called a Ponzi-scheme -see the hand-out. Hence the supremum function

equals w(x0) = +1 for all x0 2 X. Now consider the recursive formulation
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(we denote by x current period wealth xt, by y next period’s wealth and sub-

stitute out for consumption ct = xt��xt+1 (which is OK given monotonicity

of preferences)

v(x) = sup

y x
�

{x� �y + �v(y)}

Obviously the function w(x) = +1 satisfies this functional equation (just

plug in w on the right side, since for all x it is optimal to let y tend to

�1 and hence v(x) = +1. This should be the case from the first part of

the previous theorem. But the function v̌(x) = x satisfies the functional

equation, too. Using it on the right hand side gives, for an arbitrary x 2 X

sup

y x
�

{x� �y + �y} = sup

y x
�

x = x = v̌(x)

Note, however that the second part of the preceding theorem does not

apply for v̌ since the sequence {xn} defined by xn =

x0
�n is a feasible plan

from x0 > 0 and

lim

n!1
�nv(xn) = lim

n!1
�nxn = x0 > 0

Note however that the second part of the theorem gives only a su�cient con-

dition for a solution v to the functional equation being equal to the supremum

function from (SP ), but not a necessary condition. Also w itself does not

satisfy the condition, but is evidently equal to the supremum function. So

whenever we can use the CMT (or something equivalent) we have to be aware

of the fact that there may be several solutions to the functional equation,

but at most one the several is the function that we look for.

Now we want to establish a similar equivalence between the sequential

problem and the recursive problem with respect to the optimal policies/plans.

The first observation. Solving the functional equation gives us optimal poli-

cies y = g(x) (note that g need not be a function, but could be a corre-

spondence). Such an optimal policy induces a feasible plan {x̂t+1}1t=0 in the

following fashion: x0 = x̂0 is an initial condition, x̂1 2 g(x̂0) and recursively

x̂t+1 = g(x̂t). The basic question is how a plan constructed from a solution to

the functional equation relates to a plan that solves the sequential problem.

We have the following theorem.

Theorem 45 Suppose (X,�, F, �) satisfy assumptions 1. and 2.
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1. Let x̄ 2 ⇧(x0) be a feasible plan that attains the supremum in the
sequential problem. Then for all t � 0

w(x̄t) = F (x̄t, x̄t+1) + �w(x̄t+1)

2. Let x̂ 2 ⇧(x0) be a feasible plan satisfying, for all t � 0

w(x̂t) = F (x̂t, x̂t+1) + �w(x̂t+1)

and additionally1

lim

t!1
sup �tw(x̂t)  0 (5.2)

Then x̂ attains the supremum in (SP ) for the initial condition x0.

What does this result say? The first part says that any optimal plan in the

sequence problem, together with the supremum function w as value function

satisfies the functional equation for all t. Loosely it says that any optimal plan

from the sequential problem is an optimal policy for the recursive problem

(once the value function is the right one).

Again the second part is more important. It says that, for the “right”

fixed point of the functional equation w the corresponding policy g generates

a plan x̂ that solves the sequential problem if it satisfies the additional limit

condition. Again we can give this condition a loose interpretation as standing

in for a transversality condition. Note that for any plan {x̂t} generated from

a policy g associated with a value function v that satisfies (5.1) condition

(5.2) is automatically satisfied. From (5.1) we have

lim

t!1
�tv(xt) = 0

for any feasible {xt} 2 ⇧(x0), all x0. Also from Theorem 32 v = w. So for

any plan {x̂t} generated from a policy g associated with v = w we have

w(x̂t) = F (x̂t, x̂t+1) + �w(x̂t+1)

and since limt!1 �tv(x̂t) exists and equals to 0 (since v satisfies (5.1)), we
have

lim sup

t!1
�tv(x̂t) = 0

1The limit superior of a bounded sequence {xn} is the infimum of the set V of real
numbers v such that only a finite number of elements of the sequence strictly exceed v.

Hence it is the largest cluster point of the sequence {xn}.
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and hence (5.2) is satisfied. But Theorem 33.2 is obviously not redundant

as there may be situations in which Theorem 32.2 does not apply but 33.2

does. Let us look at the following example, a simple modification of the

saving problem from before. Now however we impose a borrowing constraint

of zero.

w(x0) = max

{xt+1}1t=0

1X

t=0

�t
(xt � �xt+1)

s.t. 0  xt+1  xt

�
x0 given

Writing out the objective function yields

w0(x0) = (x0 � �x1) + (x1 � �x2) + . . .

= x0

Now consider the associated functional equation

v(x) = max

0x0 x
�

{x� �x0
+ v(x0

)}

Obviously one solution of this functional equation is v(x) = x and by Theo-

rem 32.1 is rightly follows that w satisfies the functional equation. However,

for v condition (5.1) fails, as the feasible plan defined by xt =

x0
�t shows.

Hence Theorem 32.2 does not apply and we can’t conclude that v = w (al-

though we have verified it directly, there may be other examples for which

this is not so straightforward). Still we can apply Theorem 33.2 to conclude

that certain plans are optimal plans. Let {x̂t} be defined by x̂0 = x0, x̂t = 0

all t > 0. Then
lim sup

t!1
�tw(x̂t) = 0

and we can conclude by Theorem 33.2 that this plan is optimal for the se-

quential problem. There are tons of other plans for which we can apply the

same logic to shop that they are optimal, too (which shows that we obviously

can’t make any claim about uniqueness). To show that condition (5.2) has
some bite consider the plan defined by x̂t =

x0
�t . Obviously this is a feasible

plan satisfying

w(x̂t) = F (x̂t, x̂t+1) + �w(x̂t+1)
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but since for all x0 > 0

lim sup

t!1
�tw(x̂t) = x0 > 0

Theorem 33.2 does not apply and we can’t conclude that {x̂t} is optimal (as

in fact this plan is not optimal).

So basically we have a prescription what to do once we solved our func-

tional equation: pick the right fixed point (if there are more than one, check

the limit condition to find the right one, if possible) and then construct a

plan from the policy corresponding to this fixed point. Check the limit con-

dition to make sure that the plan so constructed is indeed optimal for the

sequential problem. Done.

Note, however, that so far we don’t know anything about the number (un-

less the CMT applies) and the shape of fixed point to the functional equation.

This is not quite surprising given that we have put almost no structure onto

our economy. By making further assumptions one obtains sharper character-

izations of the fixed point(s) of the functional equation and thus, in the light

of the preceding theorems, about the solution of the sequential problem.

5.2 Dynamic Programming with Bounded Re-
turns

Again we look at a functional equation of the form

v(x) = max

y2�(x)
{F (x, y) + �v(y)}

We will now assume that F : X⇥X is bounded and � 2 (0, 1). We will make

the following two assumptions throughout this section

Assumption 3: X is a convex subset of RL
and the correspondence

� : X ) X is nonempty, compact-valued and continuous.

Assumption 4: The function F : A ! R is continuous and bounded,

and � 2 (0, 1)
We immediately get that assumptions 1. and 2. are satisfied and hence

the theorems of the previous section apply. Define the policy correspondence

connected to any solution to the functional equation as

G(x) = {y 2 �(x) : v(x) = F (x, y) + �v(y)}
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and the operator T on C(X)

(Tv) (x) = max

y2�(x)
{F (x, y) + �v(y)}

Here C(X) is the space of bounded continuous functions on X and we use

the sup-metric as metric. Then we have the following

Theorem 46 Under Assumptions 3. and 4. the operator T maps C(X) into
itself. T has a unique fixed point v and for all v0 2 C(X)

d(T nv0, v)  �nd(v0, v)

The policy correspondence G belonging to v is compact-valued and upper-
hemicontinuous

Now we add further assumptions on the structure of the return function

F, with the result that we can characterize the unique fixed point of T better.

Assumption 5: For fixed y, F (., y) is strictly increasing in each of its L
components.

Assumption 6: � is monotone in the sense that x  x0
implies �(x) ✓

�(x0
).
The result we get out of these assumptions is strict monotonicity of the

value function.

Theorem 47 Under Assumptions 3. to 6. the unique fixed point v of T is
strictly increasing.

We have a similar result in spirit if we make assumptions about the cur-

vature of the return function and the convexity of the constraint set.

Assumption 7: F is strictly concave, i.e. for all (x, y), (x0, y0) 2 A and

✓ 2 (0, 1)

F [✓(x, y) + (1� ✓)(x0, y0)] � ✓F (x, y) + (1� ✓)F (x0, y0)

and the inequality is strict if x 6= x0

Assumption 8: � is convex in the sense that for ✓ 2 [0, 1] and x, x0 2 X,
the fact y 2 �(x), y0 2 �(x0

)

✓y + (1� ✓)y0 2 �(✓x+ (1� ✓)x0
)

Again we find that the properties assumed about F extend to the value

function.
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Theorem 48 Under Assumptions 3.-4. and 7.-8. the unique fixed point
of v is strictly concave and the optimal policy is a single-valued continuous
function, call it g.

Finally we state a result about the di↵erentiability of the value function,

the famous envelope theorem (some people call it the Benveniste-Scheinkman

theorem).

Assumption 9: F is continuously di↵erentiable on the interior of A.

Theorem 49 Under assumptions 3.-4. and 7.-9. if x0 2 int(X) and g(x0) 2
int(�(x0)), then the unique fixed point of T, v is continuously di↵erentiable
at x0 with

@v(x0)

@xi
=

@F (x0, g(x0))

@xi

where @v(x0)
@xi denotes the derivative of v with respect to its i-th component,

evaluated at x0.

This theorem gives us an easy way to derive Euler equations from the

recursive formulation of the neoclassical growth model. Remember the func-

tional equation

v(k) = max

0k0f(k)
U(f(k)� k0

) + �v(k0
)

Taking first order conditions with respect to k0
(and ignoring corner solutions)

we get

U 0
(f(k)� k0

) = �v0(k0
)

Denote by k0
= g(k) the optimal policy. The problem is that we don’t know

v0. But now we can use Benveniste-Scheinkman to obtain

v0(k) = U 0
(f(k)� g(k))f 0

(k)

Using this in the first order condition we obtain

U 0
(f(k)� g(k)) = �v0(k0

) = �U 0
(f(k0

)� g(k0
))f 0

(k0
)

= �f 0
(g(k))U 0

(f(g(k))� g(g(k))

Denoting k = kt, g(k) = kt+1 and g(g(k)) = kt+2 we obtain our usual Euler

equation

U 0
(f(kt)� kt+1) = �f 0

(kt+1)U
0
(f(kt+1)� kt+2)
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Chapter 6

Models with Risk

In this section we will introduce a basic model with risk and complete finan-

cial markets, in order to establish some notation and extend our discussion of

e�cient economies to this important case. We will also derive two substan-

tive results, namely that risk will be perfectly shared across households (in a

sense to be made precise), and that for the pricing of assets the distribution

of endowments (incomes) across households is irrelevant. Then, as a first

application, we will look at the stochastic neoclassical growth model, which

forms the basis for a particular theory of business cycles, the so called “Real

Business Cycle” (RBC) theory. In this section we will be a bit loose with

our treatment of risk, in that we will not explicitly discuss probability spaces

that form the formal basis of our representation of risk.

6.1 Basic Representation of Risk

The basic novelty of models with risk is the formal representation of this risk

and the ensuing description of the information structure that agents have.

We start with the notion of an event st 2 S. The set S = {⌘1, , . . . , ⌘N} of

possible events that can happen in period t is assumed to be finite and the

same for all periods t. If there is no room for confusion we use the notation

st = 1 instead of st = ⌘1 and so forth. For example S may consist of all

weather conditions than can happen in the economy, with st = 1 indicating

sunshine in period t, st = 2 indicating cloudy skies, st = 3 indicating rain

117
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and so forth.

1
As another example, consider the economy from Section 2,

but now with random endowments. In each period one of the two agents has

endowment 0 and the other has endowment 2, but who has what is random,

with st = 1 indicating that agent 1 has high endowment and st = 2 indicating

that agent 2 has high endowment at period t. The set of possible events for

this example is given by S = {1, 2}
An event history st = (s0, s1, . . . st) is a vector of length t+1 summarizing

the realizations of all events up to period t. Formally (and with some abuse

of notation), with St
= S ⇥ S ⇥ . . .⇥ S denoting the t+1-fold product of S,

event history st 2 St
lies in the set of all possible event histories of length t.

By ⇡t(st) let denote the probability of a particular event history. We

assume that ⇡t(st) > 0 for all st 2 St, for all t. For our example economy, if

s2 = (1, 1, 2) then ⇡t(s2) is the probability that agent 1 has high endowment

in period t = 0 and t = 1 and agent 2 has high endowment in period 2.

Figure 6.1 summarizes the concepts introduced so far, for the case in which

S = {1, 2} is the set of possible events that can happen in every period. Note

that the sets St
of possible event histories of length t become fairly big very

rapidly even when the set of events itself is small, which poses computational

problems when dealing with models with risk.

All commodities of our economy, instead of being indexed by time t as
before, now also have to be indexed by event histories st. In particular, an

allocation for the example economy of Section 2, but now with risk, is given

by

(c1, c2) = {c1t (st), c2t (st)}1t=0,st2St

with the interpretation that cit(s
t
) is consumption of agent i in period t if

event history st has occurred. Note that consumption in period t of agents
are allowed to (and in general will) vary with the history of events that have

occurred in the past.

Now we are ready to specify to remaining elements of the economy. With

respect to endowments, these also take the general form

(e1, e2) = {e1t (st), e2t (st)}1t=0,st2St

1Technically speaking st is a random variable with respect to some underlying proba-
bility space (⌦,A, P ), where ⌦ is some set of basis events with generic element !, A is a
sigma algebra on ⌦ and P is a probability measure.
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Figure 6.1: Event Tree in Models with Risk
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and for the particular example

e1t (s
t
) =

⇢
2 if st = 1

0 if st = 2

e2t (s
t
) =

⇢
0 if st = 1

2 if st = 2

i.e. for the particular example endowments in period t only depend on the

realization of the event st, not on the entire history. Nothing, however, would

prevent us from specifying more general endowment patterns.

Now we specify preferences. We assume that households maximize ex-
pected lifetime utility where E0 is the expectation operator at period 0, prior
to any realization of risk (in particular the risk with respect to s0). Given our

notation just established, assuming that preferences admit a von-Neumann

Morgenstern utility function representation we represent households’ prefer-

ences by

u(ci) =
1X

t=0

X

st2St

�t⇡t(s
t
)U(cit(s

t
))

This completes our description of this simple stochastic endowment economy.

6.2 Definitions of Equilibrium

Again there are two possible market structures that we can work with. The

Arrow-Debreu market structure turns out to be easier than the sequential

markets market structure, so we will start with it. Again there is an equiv-

alence theorem that relates the equilibrium of the two markets structures,

once we allow the asset market structure for the sequential markets market

structure to be rich enough.

6.2.1 Arrow-Debreu Market Structure

As usual with Arrow-Debreu, trade takes place at period 0, before any risk has
been realized (in particular, before s0 has been realized). As with allocations,

Arrow-Debreu prices have to be indexed by event histories in addition to time,

so let pt(st) denote the price of one unit of consumption, quoted at period

0, delivered at period t if (and only if) event history st has been realized.

Given this notation, the definition of an AD-equilibrium is identical to the
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case without risk, with the exception that, since goods and prices are not

only indexed by time, but also by histories, we have to sum over both time

and histories in the individual households’ budget constraint.

Definition 50 A (competitive) Arrow-Debreu equilibrium are prices {p̂t(st)}1t=0,st2St

and allocations ({ĉit(st)}1t=0,st2St)i=1,2 such that

1. Given {p̂t(st)}1t=0,st2St , for i = 1, 2, {ĉit(st)}1t=0,st2St solves

max

{cit(st)}1t=0,st2St

1X

t=0

X

st2St

�t⇡t(s
t
)U(cit(s

t
))(6.1)

s.t.
1X

t=0

X

st2St

p̂t(s
t
)cit(s

t
) 

1X

t=0

X

st2St

p̂t(s
t
)eit(s

t
) (6.2)

cit(s
t
) � 0 for all t, all st 2 St

(6.3)

2.
ĉ1t (s

t
) + ĉ2t (s

t
) = e1t (s

t
) + e2t (s

t
) for all t, all st 2 St

(6.4)

Note that there is again only one budget constraint, and that the market

clearing condition has to hold date by date, event history by event history.

Also note that, when computing equilibria, one can normalize the price of

only one commodity to 1, and consumption at the same date, but for di↵erent

event histories are di↵erent commodities. That means that if we normalize

p0(s0 = 1) = 1 we can’t also normalize p0(s0 = 2) = 1. Finally, there

are no probabilities in the budget constraint. Equilibrium prices will reflect

the probabilities of di↵erent event histories, but there is no scope for these

probabilities in the Arrow-Debreu budget constraint directly.

It is relatively straightforward to characterize equilibrium prices. Taking

first order conditions with respect to cit(s
t
) and ci0(s0) yields

�t⇡t(s
t
)U 0

(cit(s
t
)) = µpt(s

t
)

⇡0(s0)U
0
(ci0(s0)) = µp0(s0)

and combining yields

pt(st)

p0(s0)
= �t ⇡t(st)

⇡0(s0)

U 0
(cit(s

t
))

U 0
(ci0(s0))

(6.5)
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for all t, st and all agents i. This immediately implies that

U 0
(c1t (s

t
))

U 0
(c10(s0))

=

U 0
(c2t (s

t
))

U 0
(c20(s0))

or

U 0
(c2t (s

t
))

U 0
(c1t (st))

=

U 0
(c20(s0))

U 0
(c10(s0))

for all st.

for all st. That is, the ratio of marginal utilities between the two agents is

constant over time and across states of the world. In addition, if households

have CRRA period utility, the above equation implies that

✓
c2t (s

t
)

c1t (st)

◆��

=

✓
c20(s

0
)

c10(s
0
)

◆��

that is, the ratio of consumption between the two agents is constant over

time. Denoting the aggregate endowment by

et(s
t
) =

X

i

eit(s
t
)

the resource constraint then implies that for both agents

cit(s
t
) = ✓iet(s

t
) (6.6)

where ✓i is the constant share of aggregate endowment household i consumes.

Using this result in equation (6.5) we find, after normalizing p0(s0) = 1 for

the particular s0 we have chosen, that

pt(s
t
) = �t ⇡t(st)

⇡0(s0)

✓
cit(s

t
)

ci0(s0)

◆��

= �t ⇡t(st)

⇡0(s0)

✓
et(st)

e0(s0)

◆��

. (6.7)

Thus the price of consumption at node st is declining with t because of

discounting, it is the higher the more likely node st is realized and is declining

in the availability of consumption at this node (as measured by the aggregate

endowment et(st)).2

2We have to be a bit careful with prices at initial nodes ŝ0 6= s0 (because we can only
normalize one price to one). These prices are given by

p0(ŝ0)

p0(s0)
=

⇡0(ŝ0)

⇡0(s0)

✓
e0(ŝ0)

e0(s0)

◆��

.
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Equations (6.6) and (6.7) have important implications. Turning to equa-

tion (6.6), it implies that endowment risk is perfectly shared. The only en-

dowment risk that a↵ects consumption of each household i is aggregate risk,
that is, fluctuations in the aggregate endowment et(st). These shocks are born
by all households equally, in that consumption of all households falls by the

same fraction as the aggregate endowment plummets. In contrast, shocks

to individual endowments eit(s
t
) that do not a↵ect the aggregate endowment

(because household i is small in the aggregate, or because endowments of

households i and j are perfectly negatively correlated) in turn do not impact

individual consumption since they are perfectly diversified across households.

In this sense, the economy exhibits perfect risk sharing (of individual risks).

Equation (6.7) shows that Arrow Debreu equilibrium prices (and thus all

other asset prices, as discussed below) only depend the stochastic process

for the aggregate endowment et(st), but not on how these endowments are

distributed across households. This implies that if we consider an economy

with a representative household whose endowment process equals the aggre-

gate endowment process {et(st)} and who has CRRA risk aversion utility

with the same coe�cient � as all the households in our economy, then the

Arrow Debreu prices (and thus all other asset prices) in the representative

agent economy are identical to the ones we have determined in our economy

in (6.7). That is, for asset pricing purposes we might as well study the repre-

sentative agent economy (whose equilibrium allocations are of course trivial

to solve in an endowment economy since the representative agent just eats

her endowment in every period).

6.2.2 Pareto E�ciency

The definition of Pareto e�ciency is identical to that of the certainty case;

the first welfare theorem goes through without any changes (in particular,

the proof is identical, apart from changes in notation). We state both for

completeness

Definition 51 An allocation {(c1t (st), c2t (st))}1t=0,st2St is feasible if

1.
cit(s

t
) � 0 for all t, all st 2 St, for i = 1, 2

2.
c1t (s

t
) + c2t (s

t
) = e1t (s

t
) + e2t (s

t
) for all t, all st 2 St
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Definition 52 An allocation {(c1t (st), c2t (st))}1t=0,st2St is Pareto e�cient if it
is feasible and if there is no other feasible allocation {(c̃1t (st), c̃2t (st))}1t=0,st2St

such that

u(c̃i) � u(ci) for both i = 1, 2

u(c̃i) > u(ci) for at least one i = 1, 2

Proposition 53 Let ({ĉit(st)}1t=0,st2St)i=1,2 be a competitive equilibrium allo-
cation. Then ({ĉit(st)}1t=0,st2St)i=1,2 is Pareto e�cient.

Note that we could have obtained the above characterization of equilib-

rium allocations and prices from following the Negishi approach, that is, by

solving a social planner problem and using the transfer functions to compute

the appropriate welfare weights.

6.2.3 Sequential Markets Market Structure

Now let trade take place sequentially in each period (more precisely, in each

period, event-history pair). Without risk we allowed trade in consumption

and in one-period IOU’s. For the equivalence between Arrow-Debreu and

sequential markets with risk, this is not enough. We introduce one period

contingent IOU’s, financial contracts bought in period t that pay out one

unit of the consumption good in t + 1 only for a particular realization of

st+1 = j tomorrow.

3
So let qt(st, st+1 = j) denote the price at period t of a

contract that pays out one unit of consumption in period t + 1 if (and only

if) tomorrow’s event is st+1 = j. These contracts are often called Arrow secu-

rities, contingent claims or one-period insurance contracts. Let ait+1(s
t, st+1)

denote the quantities of these Arrow securities bought (or sold) at period t
by agent i.

The period t, event history st budget constraint of agent i is given by

cit(s
t
) +

X

st+12S

qt(s
t, st+1)a

i
t+1(s

t, st+1)  eit(s
t
) + ait(s

t
)

3A full set of one-period Arrow securities is su�cient to make markets “sequentially
complete”, in the sense that any (nonnegative) consumption allocation is attainable with
an appropriate sequence of Arrow security holdings {at+1(st, st+1)} satisfying all sequential
markets budget constraints.
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Note that agents purchase Arrow securities {ait+1(s
t, st+1)}st+12S

for all con-

tingencies st+1 2 S that can happen tomorrow, but that, once st+1 is realized,

only the ait+1(s
t+1

) corresponding to the particular realization of st+1 becomes

the asset position that he starts the current period with. We assume that

ai0(s0) = 0 for all s0 2 S.
We then have the following

Definition 54 A SM equilibrium is allocations {
⇣
ĉit(s

t
),
�
âit+1(s

t, st+1)
 
st+12S

⌘

i=1,2
}1t=0,st2St ,

and prices for Arrow securities {q̂t(st, st+1)}1t=0,st2St,st+12S such that

1. Given {q̂t(st, st+1)}1t=0,st2St,st+12S, for all i, {ĉit(st),
�
âit+1(s

t, st+1)
 
st+12S

}1t=0,st2St

solves

max

{cit(st),{ait+1(s
t,st+1)}

st+12S
}1
t=0,st2St

u(ci)

s.t.

cit(s
t
) +

X

st+12S

q̂t(s
t, st+1)a

i
t+1(s

t, st+1)  eit(s
t
) + ait(s

t
) for all t, st 2 St

cit(s
t
) � 0 for all t, st 2 St

ait+1(s
t, st+1) � � ¯Ai for all t, st 2 St, st+1 2 S

2. For all t � 0

2X

i=1

ĉit(s
t
) =

2X

i=1

eit(s
t
) for all t, st 2 St

2X

i=1

âit+1(s
t, st+1) = 0 for all t, st 2 St and all st+1 2 S

Note that we have a market clearing condition in the asset market for
each Arrow security being traded for period t+ 1.

6.2.4 Equivalence between Market Structures

As before we can establish the equivalence, in terms of equilibrium outcomes,

between the Arrow-Debreu and the sequential markets structure. Without

repeating the details (which are identical to the discussion in chapter 2,
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mutatis mutandis), the key to the argument is the map between Arrow-

Debreu prices and prices for Arrow securities, given by

qt(s
t, st+1) =

pt+1(st+1
)

pt(st)
(6.8)

pt(s
t
) = p0(s0) ⇤ q0(s0, s1) ⇤ . . . qt�1(s

t�1, st). (6.9)

6.2.5 Asset Pricing

With Arrow Debreu prices (and sequential market prices from (6.8)) in hand

we can now price any additional asset in this economy. Consider an arbitrary

asset j, defined by the dividends dj = {djt(st)} it pays in each node st. The
dividend djt(s

t
) is simply a claim to djt(s

t
) units of the consumption good at

node st of the event tree. Thus the time zero (cum dividend) price of such

an asset is given by

P j
0 (d) =

1X

t=0

X

st

pt(s
t
)djt(s

t
),

that is, it is the value of all consumption goods the asset delivers at all future

dates and states. The ex-dividend price of such an asset at node st, expressed
in terms of period t consumption good is given by

P j
t (d; s

t
) =

P1
⌧=t+1

P
s⌧ |st p⌧ (s

⌧
)dj⌧ (s

⌧
)

pt(st)

that is, the value of all future dividends, translated into the node st con-

sumption good.

Most of asset pricing work with asset returns rather than asset prices. So

let us define the one-period gross realized real return of an asset j between

st and st+1
as

Rj
t+1(s

t+1
) =

P j
t+1(d; s

t+1
) + djt+1(s

t+1
)

P j
t (d; st)

Let us consider a few examples that make these definitions clear.

Example 55 Consider an Arrow security from the Sequential Markets equi-
librium above that is purchased in st and pays o↵ one unit of consumption
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in state ŝt+1 and nothing in all other states st+1 (and nothing beyond period
t+ 1). Then its price at st is given by

PA
t (d; s

t
) =

pt+1(ŝt+1
)

pt(st)
= qt(s

t, ŝt+1)

and the associated gross realized return between st and ŝt+1
= (st, ŝt+1) is

RA
t+1(ŝ

t+1
) =

0 + 1

pt+1(ŝt+1
)/pt(st)

=

pt(st)

pt+1(ŝt+1
)

=

1

qt(st, ŝt+1)

and RA
t+1(s

t+1
) = 0 for all st+1 6= st+1.

Example 56 Now consider a one period risk-free bond, that is, an asset
that is purchased at st and pays one unit of consumption at all events st+1

tomorrow. Its price at st is given by

PB
t (d; st) =

P
st+1|st pt+1(st+1

)

pt(st)
=

X

st+1

qt(s
t, st+1)

and its realized return is given by

RB
t+1(s

t+1
) =

1

PB
t (d; st)

=

1P
st+1

qt(st, st+1)
= RB

t+1(s
t
)

which from the perspective of st is nonstochastic (since it does not depend on
st+1). Hence the name risk-free bond.

Example 57 A stock that pays as dividend the aggregate endowment in each
period (a so-called Lucas tree) has a price per share (if the total number of
shares outstanding is one) of:

P S
t (d; s

t
) =

P1
⌧=t+1

P
s⌧ |st p⌧ (s

⌧
)e⌧ (s⌧ )

pt(st)
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Example 58 An option to buy one share of the Lucas tree at time T (at all
nodes) for a price K has a price P call

t (st) at node st given by

P call
t (st) =

X

sT |st

pT (sT )

pt(st)
max

�
P S
T (d; s

T
)�K, 0

 

Such an option is called a call option. A put option is the option to sell the
same asset, and its price given by

P put
t (st) =

X

sT |st

pT (sT )

pt(st)
max

�
K � P S

T (d; s
T
), 0
 
.

The price K is called the strike price (and easily could be made dependent on
sT , too).

6.3 Markov Processes

So far we haven’t specified the exact stochastic structure of risk. In particu-

lar, in no sense have we assumed that the random variables st and s⌧ , ⌧ > t
are independent over time or time-dependent in a simple way. Our theory

is completely general along this dimension; to make it implementable (ana-

lytically or numerically), however, one typically has to assume a particular

structure of the risk.

In particular, for the computation of equilibria or socially e�cient allo-

cations using recursive techniques it is useful to assume that the st’s follow
a discrete time (time is discrete), discrete state (the number of values st can
take is finite) time homogeneous Markov chain. Let by

⇡(j|i) = prob(st+1 = j|st = i)

denote the conditional probability that the state in t+ 1 equals j 2 S if the

state in period t equals st = i 2 S. Time homogeneity means that ⇡ is not

indexed by time. Given that st+1 2 S and st 2 S and S is a finite set, ⇡(.|.)
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can be represented by an N ⇥N -matrix of the form

⇡ =

0

BBBBBBBBB@

⇡11 ⇡12 · · · .

.

. · · · ⇡1N

⇡21
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

⇡i1 · · · · · · ⇡ij · · · ⇡iN
.

.

.

.

.

.

.

.

.

⇡N1 · · · · · · .

.

. · · · ⇡NN

1

CCCCCCCCCA

with generic element ⇡ij = ⇡(j|i) =prob(st+1 = j|st = i). Hence the i-th
row gives the probabilities of going from state i today to all the possible

states tomorrow, and the j-th column gives the probability of landing in

state j tomorrow conditional of being in an arbitrary state i today. Since

⇡ij � 0 and

P
j ⇡ij = 1 for all i (for all states today, one has to go somewhere

tomorrow), the matrix ⇡ is a so-called stochastic matrix.

Suppose the probability distribution over states today is given by the

N -dimensional column vector Pt = (p1t , . . . , p
N
t )

T
and risk is described by a

Markov chain of the from above. Note that

P
i p

i
t = 1. Then the probability

of being in state j tomorrow is given by

pjt+1 =

X

i

⇡ijp
i
t

i.e. by the sum of the conditional probabilities of going to state j from state i,
weighted by the probabilities of starting out in state i today. More compactly

we can write

Pt+1 = ⇡TPt.

We have the following

Definition 59 A distribution ⇧ 2 RN
+ that satisfies

⇧ = ⇡T
⇧

is called a stationary distribution associatted with the Markov chain ⇡.

A stationary distribution has the property that if one starts out today

with a distribution over states ⇧ then tomorrow one ends up with the same
distribution over states ⇧. From the theory of stochastic matrices we have

the following result, stated here without proof
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Theorem 60 Associated with every Markov transition matrix ⇡ is at least
one stationary distribution ⇧. It is the eigenvector (normalized to length 1)
associated with the eigenvalue � = 1 of ⇡T .

Thus note that every stochastic matrix ⇡ has (at least) one eigenvalue

equal to 1. If there is only one such eigenvalue, then there is a unique sta-

tionary distribution, if there are multiple eigenvalues of length 1, then there

a multiple stationary distributions (in fact a continuum of them).

Also note that the Markov assumption restricts the conditional probabil-

ity distribution of st+1 to depend only on the realization of st, but not on

realizations of st�1, st�2 and so forth. This obviously is a severe restriction

on the possible randomness that we allow, but it also means that the nature

of risk for period t+1 is completely described by the realization of st, which
is crucial when formulating these economies recursively. We have to start the

Markov process out at period 0, so let by ⇧(s0) denote the probability that

the state in period 0 is s0. Given our Markov assumption the probability of

a particular event history can then be written as

⇡t+1(s
t+1

) = ⇡(st+1|st) ⇤ ⇡(st|st�1) . . . ⇤ ⇡(s1|s0) ⇤ ⇧(s0)

Example 61 Suppose that N = 2. Let the transition matrix be symmetric,
that is

⇡ =

✓
p 1� p

1� p p

◆

for some p 2 (0, 1). Then the unique invariant distribution is ⇧(s) = 0.5 for
both s.

Example 62 Let

⇡ =

✓
1 0

0 1

◆

then any distribution over the two states is an invariant distribution.

6.4 Stochastic Neoclassical Growth Model

In this section we will briefly consider a stochastic extension to the determin-

istic neoclassical growth model. The stochastic neoclassical growth model is

the workhorse for half of modern business cycle theory; everybody doing real
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business cycle theory uses it. It also forms an important ingredient of many

New Keynesian business cycle models. I therefore think that it is useful to

expose you to this model, even though you may decide not to do business

cycle research theory in the future.

The economy is populated by a large number of identical households. For

convenience we normalize the number of households to 1. In each period three

goods are traded, labor services nt, capital services kt and the final output

good yt, which can be used for consumption ct or investment it.

1. Technology:

yt = eztF (kt, nt)

where zt is a technology shock. F is assumed to have the usual proper-

ties, i.e. has constant returns to scale, positive but declining marginal

products and it satisfies the INADA conditions. We assume that the

technology shock has unconditional mean 0 and follows aN -state Markov

chain. Let Z = {z1, z2, . . . zN} be the state space of the Markov chain,

i.e. the set of values that zt can take on. Let ⇡ = (⇡ij) denote the

Markov transition matrix and ⇧ the stationary distribution of the chain

(ignore the fact that in some of our applications ⇧ will not be unique).

Let ⇡(z0|z) = prob(zt+1 = z0|zt = z). In most of the applications we

will take N = 2. The evolution of the capital stock is given by

kt+1 = (1� �)kt + it

and the composition of output is given by

yt = ct + it

Note that the set Z takes the role of S in our general formulation of

risk, and zt corresponds to st.

2. Preferences:

E0

1X

t=0

�tu(ct) with � 2 (0, 1)

The period utility function is assumed to have the usual properties.

3. Endowment: each household has an initial endowment of capital, k0
and one unit of time in each period. These endowments are not stochas-
tic.
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4. Information: The variable zt, the only source of risk in this model,

is publicly observable. We assume that in period 0 z0 has not been

realized, but is drawn from the stationary distribution ⇧. All agents
are perfectly informed that the technology shock follows the Markov

chain ⇡ with initial distribution ⇧.

A lot of the things that we did for the case without risk go through almost

unchanged for the stochastic model. Specifically, we could prove the first wel-

fare theorem and characterize competitive equilibrium allocations using the

social planner problem. The only key di↵erence is that now commodities have

to be indexed not only by time, but also by histories of productivity shocks

zt, since goods delivered at di↵erent nodes of the event tree are di↵erent

commodities, even though they have the same physical characteristics.

6.4.1 Social Planner Problem in Recursive Formula-
tion

For the recursive formulation of the social planners problem, note that the

current state of the economy now not only includes the capital stock k that

the planner brings into the current period, but also the current state of the

technology z. This is due to the fact that current production depends on

the current technology shock, but also due to the fact that the probability

distribution of tomorrow’s shocks ⇡(z0|z) depends on the current shock, due

to the Markov structure of the shocks. Also note that even if the social

planner chooses capital stock k0
for tomorrow today, lifetime utility from

tomorrow onwards is uncertain, due to the risk of z0. These considerations,

plus the usual observation that nt = 1 is optimal, give rise to the following

Bellman equation

v(k, z) = max

0k0ezF (k,1)+(1��)k

(
U(ezF (k, 1) + (1� �)k � k0

) + �
X

z0

⇡(z0|z)v(k0, z0)

)
.

However, the model discussed so far is not quite yet a satisfactory business

cycle model since it does not permit fluctuations in labor input of the sort that

characterize business cycles in the real world. For this we require households

to value leisure, so that the period utility function becomes

U(ct, lt) = U(ct, 1� nt)
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and the recursive formulation of the planner problem reads as

v(k, z) = max

0k0ezF (k,1)+(1��)k
0n1

(
U(ezF (k, n) + (1� �)k � k0, 1� n) + �

X

z0

⇡(z0|z)v(k0, z0)

)

This version of the model is also often called the Real Business Cycle model,

since it ascribes the origins of fluctuations in aggregate economic activity to

real shocks, those to total factor productivity ez.
The first order conditions for the maximization problem (assuming dif-

ferentiability of the value function) read as

ezFn(k, n) =
U2(c, 1� n)

U1(c, 1� n)
(6.10)

and

U1(c, 1� n) = �
X

z0

⇡(z0|z)v0(k0, z0) (6.11)

where U1 is the marginal utility of consumption, U2 is the marginal utility of

leisure and v0 is the first derivative of the value function with respect to its

first argument. The envelope condition reads as

v0(k, z) = (ezFk(k, n) + 1� �)U1(c, 1� n). (6.12)

Using this in equation (6.11) we obtain

U1(c, 1� n) = �
X

z0

⇡(z0|z) (ez0Fk(k
0, n0

) + 1� �)U1(c
0, 1� n0

). (6.13)

Thus the key optimality conditions of the stochastic neoclassical growth

model with endogenous labor supply, often referred to as the real business

cycle model, are (6.10) and (6.13). Equation (6.10), the intratemporal op-

timality condition, states that at the optimum the marginal rate of substi-

tution between leisure and consumption is equated to the marginal product

of labor (the wage, in the decentralized equilibrium). Equation (6.13) is the
standard intertemporal Euler equation, now equating the marginal utility of

consumption today to the expected marginal utility of consumption tomor-

row, adjusted by the time discount factor � and the stochastic rate of return

on capital, ez0Fk(k0, n0
) + 1 � �, which in turn equals the gross real interest

rate in the competitive equilibrium.
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6.4.2 Recursive Competitive Equilibrium

The definition of a recursive competitive equilibrium proceeds in exactly the

same way as for the deterministic neoclassical growth model. We then have

Definition 63 A recursive competitive equilibrium is a value function v :

R3
+ ! R and policy functions c, n, g : R3

+ ! R+ for the representative
household, a labor demand function for the representative firm N : R2

+ !
R+, pricing functions w, r : R2

+ ! R+ and an aggregate law of motion
H : R2

+ ! R+ such that

1. Given the functions w, r and H, the value function v solves the Bellman
equation

v(k, z,K) = max

c,k0,n�0

(
U(c, n) + �

X

z02Z

⇡(z0|z)v(k0, z0, K 0
)

)

s.t.

c+ k0
= w(z,K)n+ (1 + r(z,K)� �)k

K 0
= H(z,K)

and c, n, g are the associated policy functions.

2. The labor demand and pricing functions satisfy

w(z,K) = ezFn(K,N(z,K))

r(z,K) = ezFk(K,N(z,K)).

3. Consistency
H(z,K) = g(K, z,K)

4. For all K 2 R+

c(K, z,K) + g(K, z,K) = ezF (K,N(z,K)) + (1� �)K

N(z,K) = n(K, z,K)

Note that by using the first order conditions and the envelope condition

of the household problem we can arrive at exactly the same intratemporal

and intertemporal optimality conditions as from the recursive social planner

problem, once we substitute out prices with marginal productivities from the

firm’s optimality conditions.
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The Two Welfare Theorems

In this section we will present the two fundamental theorems of welfare eco-

nomics for economies in which the commodity space is a general (real) vector

space, which is not necessarily finite dimensional. Since in macroeconomics

we often deal with agents or economies that live forever, usually a finite

dimensional commodity space is not su�cient for our analysis. The signifi-

cance of the welfare theorems, apart from providing a normative justification

for studying competitive equilibria is that planning problems characteriz-

ing Pareto optima are usually easier to solve that equilibrium problems, the

ultimate goal of our theorizing.

Our discussion will follow Stokey et al. (1989), which in turn draws

heavily on results developed by Debreu (1954).

7.1 What is an Economy?

We first discuss how what an economy is in Arrow-Debreu language. An

economy E = ((Xi, ui)i2I , (Yj)j2J) consists of the following elements

1. A list of commodities, represented by the commodity space S. We re-

quire S to be a normed (real) vector space with norm k.k.1
1For completeness we state the following definitions

Definition 64 A real vector space is a set S (whose elements are called vectors) on which
are defined two operations

• Addition + : S ⇥ S ! S. For any x, y 2 S, x+ y 2 S.

135
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2. A finite set of people i 2 I. Abusing notation I will by I denote both

the set of people and the number of people in the economy.

3. Consumption sets Xi ✓ S for all i 2 I. We will incorporate the restric-

tions that households endowments place on the xi in the description of

the consumption sets Xi.

4. Preferences representable by utility functions ui : S ! R.

5. A finite set of firms j 2 J. The same remark about notation as above

applies.

• Scalar Multiplication · : R ⇥ S ! S. For any ↵ 2 R and any x 2 S, ↵x 2 S that
satisfy the following algebraic properties: for all x, y 2 S and all ↵,� 2 R

(a) x+ y = y + x

(b) (x+ y) + z = x+ (y + z)

(c) ↵ · (x+ y) = ↵ · x+ ↵ · y
(d) (↵+ �) · x = ↵ · x+ � · x
(e) (↵�) · x = ↵ · (� · x)
(f) There exists a null element ✓ 2 S such that

x+ ✓ = x

0 · x = ✓

(g) 1 · x = x

Definition 65 A normed vector space is a vector space is a vector space S together with
a norm k.k : S ! R such that for all x, y 2 S and ↵ 2 R

(a) kxk � 0, with equality if and only if x = ✓

(b) k↵ · xk = |↵| kxk
(c) kx+ yk  kxk+ kyk

Note that in the first definition the adjective real refers to the fact that scalar multi-
plication is done with respect to a real number. Also note the intimate relation between
a norm and a metric defined above. A norm of a vector space S, k.k : S ! R induces a
metric d : S ⇥ S ! R by

d(x, y) = kx� yk
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6. Technology sets Yj ✓ S for all j 2 J. Let by

Y =

X

j2J

Yj =

(
y 2 S : 9(yj)j2J such that y =

X

j2J

yj and yj 2 Yj for all j 2 J

)

denote the aggregate production set.

A private ownership economy

˜E = ((Xi, ui)i2I , (Yj)j2J , (✓ij)i2I,j2J) con-

sists of all the elements of an economy and a specification of ownership of

the firms ✓ij � 0 with

P
i2I ✓ij = 1 for all j 2 J. The entity ✓ij is interpreted

as the share of ownership of household ◆ to firm j, i.e. the fraction of total

profits of firm j that household i is entitled to.

With our formalization of the economy we can also make precise what

we mean by an externality. An economy is said to exhibit an externality if

household i’s consumption set Xi or firm j’s production set Yj is a↵ected by

the choice of household k’s consumption bundle xk or firm m’s production

plan ym. Unless otherwise stated we assume that we deal with an economy

without externalities.

Definition 66 An allocation is a tuple [(xi)i2I , (yj)j2J ] 2 SI⇥J .

In the economy people supply factors of production and demand final

output goods. We follow Debreu and use the convention that negative com-

ponents of the xi’s denote factor inputs and positive components denote final

goods. Similarly negative components of the yj’s denote factor inputs of firms

and positive components denote final output of firms.

Definition 67 An allocation [(xi)i2I , (yj)j2J ] 2 SI⇥J is feasible if

1. xi 2 Xi for all i 2 I

2. yj 2 Yj for all j 2 J

3. (Resource Balance) X

i2I

xi =

X

j2J

yj

Note that we require resource balance to hold with equality, ruling out

free disposal. If we want to allow free disposal we will specify this directly

as part of the description of technology.
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Definition 68 An allocation [(xi)i2I , (yj)j2J ] is Pareto optimal if

1. it is feasible

2. there does not exist another feasible allocation [(x⇤
i )i2I , (y

⇤
j )j2J ] such

that

ui(x
⇤
i ) � ui(xi) for all i 2 I

ui(x
⇤
i ) > ui(xi) for at least one i 2 I

Note that if I = J = 1 then

2
for an allocation [x, y] resource balance

requires x = y, the allocation is feasible if x 2 X \ Y, and the allocation is

Pareto optimal if

x 2 arg max

z2X\Y
u(z)

Also note that the definition of feasibility and Pareto optimality are iden-

tical for economies E and private ownership economies

˜E. The di↵erence

comes in the definition of competitive equilibrium and there in particular

in the formulation of the resource constraint. The discussion of competitive

equilibrium requires a discussion of prices at which allocations are evaluated.

Since we deal with possibly infinite dimensional commodity spaces, prices

in general cannot be represented by a finite dimensional vector. To discuss

prices for our general environment we need a more general notion of a price

system. This is necessary in order to state and prove the welfare theorems

for infinitely lived economies that we are interested in.

7.2 Dual Spaces

A price system attaches to every bundle of the commodity space S a real

number that indicates how much this bundle costs. If the commodity space

is a finite (say k�) dimensional Euclidean space, then the natural thing to

2The assumption that J = 1 is not at all restrictive if we restrict our attention to
constant returns to scale technologies. Then, in any competitive equilibrium profits are
zero and the number of firms is indeterminate in equilibrium; without loss of generality
we then can restrict attention to a single representative firm. If we furthermore restrict
attention to identical people and type identical allocations, then de facto I = 1. Under
which assumptions the restriction to type identical allocations is justified will be discussed
below.
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do is to represent a price system by a k-dimensional vector p = (p1, . . . pk),
where pl is the price of the l-th component of a commodity vector. The price

of an entire point of the commodity space is then �(s) =
Pk

l=1 slpl. Note that
every p 2 Rk

represents a function that maps S = Rk
into R. Obviously,

since for a given p and all s, s0 2 S and all ↵, � 2 R

�(↵s+ �s0) =
kX

l=1

pl(↵sl + �s0l) = ↵
kX

l=1

plsl + �
kX

l=1

pls
0
l = ↵�(s) + ��(s0)

the mapping associated with p is linear. We will take as a price system for

an arbitrary commodity space S a continuous linear functional defined on

S. The next definition makes the notion of a continuous linear functional

precise.

Definition 69 A linear functional � on a normed vector space S (with as-
sociated norm kkS) is a function � : S ! R that maps S into the reals and
satisfies

�(↵s+ �s0) = ↵�(s) + ��(s0) for all s, s0 2 S, all ↵, � 2 R

The functional � is continuous if ksn � skS ! 0 implies |�(sn)� �(s)| ! 0

for all {sn}1n=0 2 S, s 2 S. The functional � is bounded if there exists a
constant M 2 R such that |�(s)|  M kskS for all s 2 S. For a bounded
linear functional � we define its norm by

k�kd = sup

kskS1
|�(s)|

Fortunately it is rather easy to verify whether a linear functional is con-

tinuous and bounded. Stokey et al. state and prove a theorem that states

that a linear functional is continuous if it is continuous at a particular point

s 2 S and that it is bounded if (and only if) it is continuous. Hence a linear

functional is bounded and continuous if it is continuous at a single point.

For any normed vector space S the space

S⇤
= {� : � is a continuous linear functional on S}

is called the (algebraic) dual (or conjugate) space of S. With addition and

scalar multiplication defined in the standard way S⇤
is a vector space, and

with the norm kkd defined above S⇤
is a normed vector space as well. Note
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(you should prove this

3
) that even if S is not a complete space, S⇤

is a

complete space and hence a Banach space (a complete normed vector space).

Let us consider several examples that will be of interest for our economic

applications.

Example 70 For each p 2 [1,1) define the space lp by

lp = {x = {xt}1t=0 : xt 2 R, for all t; kxkp =
 1X

t=0

|xt|p
! 1

p

< 1}

with corresponding norm kxkp . For p = 1, the space l1 is defined cor-
respondingly, with norm kxk1 = supt |xt|. For any p 2 [1,1) define the
conjugate index q by

1

p
+

1

q
= 1

For p = 1 we define q = 1. We have the important result that for any
p 2 [1,1) the dual of lp is lq. This result can be proved by using the following
theorem (which in turn is proved by Luenberger (1969), p. 107.)

Theorem 71 Every continuous linear functional � on lp, p 2 [1,1), is rep-
resentable uniquely in the form

�(x) =
1X

t=0

xtyt (7.1)

where y = {yt} 2 lq. Furthermore, every element of lq defines an element of
the dual of lp, l⇤p in this way, and we have

k�kd = kykq =
(

(

P1
t=0 |yt|q)

1
q if 1 < p < 1

supt |yt| if p = 1

Let’s first understand what the theorem gives us. Take any space lp
(note that the theorem does NOT make any statements about l1). Then
the theorem states that its dual is lq. The first part of the theorem states

that lq ✓ l⇤p. Take any element � 2 l⇤p. Then there exists y 2 lq such that �

3After you are done with this, check Kolmogorov and Fomin (1970), p. 187 (Theorem
1) for their proof.
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is representable by y. In this sense � 2 lq. The second part states that any

y 2 lq defines a functional � on lp by (7.1). Given its definition, � is obviously

continuous and hence bounded. Finally the theorem assures that the norm

of the functional � associated with y is indeed the norm associated with lq.
Hence l⇤p ✓ lq.

As a result of the theorem, whenever we deal with lp, p 2 [1,1) as

commodity space we can restrict attention to price systems that can be rep-

resented by a vector p = (p0, p1, . . . pt, . . .) and hence have a straightforward

economic interpretation: pt is the price of the good at period t and the cost

of a consumption bundle x is just the sum of the cost of all its components.

For reasons that will become clearer later the most interesting commodity

space for infinitely lived economies, however, is l1. And for this commodity

space the previous theorem does not make any statements. It would suggest

that the dual of l1 is l1, but this is not quite correct, as the next result shows.

Proposition 72 The dual of l1 contains l1. There are � 2 l⇤1 that are not
representable by an element y 2 l1

Proof. For the first part for any y 2 l1 define � : l1 ! R by

�(x) =
1X

t=0

xtyt

We need to show that � is linear and continuous. Linearity is obvious. For

continuity we need to show that for any sequence {xn} 2 l1 and x 2 l1,
kxn � xk = supt |xn

t � xt| ! 0 implies |�(xn
)� �(x)| ! 0. Since y 2 l1 there

exists M such that

P1
t=0 |yt| < M. Since supt |xn

t � xt| ! 0, for all � > 0

there exists N(�) such that fro all n > N(�) we have supt |xn
t � xt| < �. But

then for any " > 0, taking �(") = "
2M and N(") = N(�(")), for all n > N(")

|�(xn
)� �(x)| =

�����

1X

t=0

xn
t yt �

1X

t=0

xtyt

�����


1X

t=0

|yt(xn
t � xt)|


1X

t=0

|yt| · |xn
t � xt|

 M�(e) =
"

2

< "
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The second part we prove via a counter example after we have proved the

second welfare theorem.

The second part of the proposition is somewhat discouraging in that it

asserts that, when dealing with l1 as commodity space we may require a

price system that does not have a natural economic interpretation. It is true

that there is a subspace of l1 for which l1 is its dual. Define the space c0
(with associated sup-norm) as

c0 = {x 2 l1 : lim

t!1
xt = 0}

We can prove that l1 is the dual of c0. Since c0 ✓ l1 and l1 ✓ l⇤1, obviously
l1 ✓ c⇤0. It remains to show that any � 2 c⇤0 can be represented by a y 2 l1.
[TO BE COMPLETED]

7.3 Definition of Competitive Equilibrium

Corresponding to our two notions of an economy and a private ownership

economy we have two definitions of competitive equilibrium that di↵er in

their specification of the individual budget constraints.

Definition 73 A competitive equilibrium is an allocation [(x0
i )i2I , (y

0
j )j2J ]

and a continuous linear functional � : S ! R such that

1. for all i 2 I, x0
i solves maxui(x) subject to x 2 Xi and �(x)  �(x0

i )

2. for all j 2 J, y0j solves max�(y) subject to y 2 Yj

3.
P

i2I x
0
i =

P
j2J y

0
j

In this definition we have obviously ignored ownership of firms. If, how-

ever, all Yj are convex cones, the technologies exhibit constant returns to

scale, profits are zero in equilibrium and this definition of equilibrium is

equivalent to the definition of equilibrium for a private ownership economy

(under appropriate assumptions on preferences such as local nonsatiation).

Note that condition 1. is equivalent to requiring that for all i 2 I, x 2 Xi

and �(x)  �(x0
i ) implies ui(x)  ui(x0

i ) which states that all bundles that

are cheaper than x0
i must not yield higher utility. Again note that we made

no reference to the value of an individuals’ endowment or firm ownership.
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Definition 74 A competitive equilibrium for a private ownership economy is
an allocation [(x0

i )i2I , (y
0
j )j2J ] and a continuous linear functional � : S ! R

such that

1. for all i 2 I, x0
i solves maxui(x) subject to x 2 Xi and �(x) P

j2J ✓ij�(y
0
j )

2. for all j 2 J, y0j solves max�(y) subject to y 2 Yj

3.
P

i2I x
0
i =

P
j2J y

0
j

We can interpret

P
j2J ✓ij�(y

0
j ) as the value of the ownership that house-

hold i holds to all the firms of the economy.

7.4 The Neoclassical Growth Model in Arrow-
Debreu Language

Let us look at the neoclassical growth model presented in Section 2. We will

adopt the notation so that it fits into our general discussion. Remember that

in the economy the representative household owned the capital stock and

the representative firm, supplied capital and labor services and bought final

output from the firm. A helpful exercise would be to repeat this exercise

under the assumption that the firm owns the capital stock. The household

had unit endowment of time and initial endowment of

¯k0 of the capital stock.
To make our exercise more interesting we assume that the household values

consumption and leisure according to instantaneous utility function U(c, l),
where c is consumption and l is leisure. The technology is described by

y = F (k, n) where F exhibits constant returns to scale. For further details

refer to Section 2. Let us represent this economy in Arrow-Debreu language.

• I = J = 1, ✓ij = 1

• Commodity Space S: since three goods are traded in each period (final

output, labor and capital services), time is discrete and extends to

infinity, a natural choice is S = l31 = l1 ⇥ l1 ⇥ l1. That is, S consists

of all three-dimensional infinite sequences that are bounded in the sup-

norm, or

S = {s = (s1, s2, s3) = {(s1t , s2t , s3t )}1t=0 : s
i
t 2 R, sup

t
max

i

��sit
�� < 1}



144 CHAPTER 7. THE TWO WELFARE THEOREMS

Obviously S, together with the sup-norm, is a (real) normed vector

space. We use the convention that the first component of s denotes the
output good (and hence is required to be positive), whereas the second

and third components denote labor and capital services, respectively.

Again following the convention these inputs are required to be negative.

• Consumption Set X :

X = {{x1
t , x

2
t , x

3
t} 2 S : x3

0 � �¯k0,�1  x2
t  0, x3

t  0, x1
t � 0, x1

t�(1��)x3
t+x3

t+1 � 0 for all t}
We do not distinguish between capital and capital services here; this can

be done by adding extra notation and is an optional homework. The

constraints indicate that the household cannot provide more capital in

the first period than the initial endowment, can’t provide more than

one unit of labor in each period, holds nonnegative capital stock and

is required to have nonnegative consumption. Evidently X ✓ S.

• Utility function u : X ! R is defined by

u(x) =
1X

t=0

�tU(x1
t � (1� �)x3

t + x3
t+1, 1 + x2

t )

Again remember the convention than labor and capital (as inputs) are

negative.

• Aggregate Production Set Y :

Y = {{y1t , y2t , y3t } 2 S : y1t � 0, y2t  0, y3t  0, y1t = F (�y3t ,�y2t ) for all t}
Note that the aggregate production set reflects the technological con-

straints in the economy. It does not contain any constraints that have

to do with limited supply of factors, in particular �1  y2t is not im-

posed.

• An allocation is [x, y] with x, y 2 S. A feasible allocation is an allocation

such that x 2 X, y 2 Y and x = y. An allocation is Pareto optimal is it

is feasible and if there is no other feasible allocation [x⇤, y⇤] such that

u(x⇤
) > u(x).

• A price system � is a continuous linear functional � : S ! R. If �
has inner product representation, we represent it by p = (p1, p2, p3) =
{(p1t , p2t , p3t )}1t=0.
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• A competitive equilibrium for this private ownership economy is an

allocation [x⇤, y⇤] and a continuous linear functional such that

1. y⇤ maximizes �(y) subject to y 2 Y

2. x⇤
maximizes u(x) subject to x 2 X and �(x)  �(y⇤)

3. x⇤
= y⇤

Note that with constant returns to scale �(y⇤) = 0. With inner product

representation of the price system the budget constraint hence becomes

�(x) = p · x =

1X

t=0

3X

i=1

pitx
i
t  0

Remembering our sign convention for inputs and mapping p1t = pt, p2t = ptwt,
p3t = ptrt we obtain the same budget constraint as in Section 2.

7.5 A Pure Exchange Economy in Arrow-Debreu
Language

Suppose there are I individuals that live forever. There is one nonstorable

consumption good in each period. Individuals order consumption allocations

according to

ui(ci) =
1X

t=0

�t
iU(cit)

They have deterministic endowment streams ei = {eit}1t=0. Trade takes place

at period 0. The standard definition of a competitive (Arrow-Debreu) equi-

librium would go like this:

Definition 75 A competitive equilibrium are prices {pt}1t=0 and allocations
({ĉit}1t=0)i2I such that

1. Given {pt}1t=0, for all i 2 I, {ĉit}1t=0 solves maxci�0 ui(ci) subject to

1X

t=0

pt(c
i
t � eit)  0
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2. X

i2I

cit =
X

i2I

eit for all t

We briefly want to demonstrate that we can easily write this economy in

our formal language. What goes on is that the household sells his endowment

of the consumption good to the market and buys consumption goods from

the market. So even though there is a single good in each period we find it

useful to have two commodities in each period. We also introduce an artificial

technology that transforms one unit of the endowment in period t into one

unit of the consumption good at period t. There is a single representative

firm that operates this technology and each consumer owns share ✓i of the
firm, with

P
i2I ✓i = 1. We then have the following representation of this

economy

• S = l21. We use the convention that the first good is the consumption

good to be consumed, the second good is the endowment to be sold as

input by consumers. Again we use the convention that final output is

positive, inputs are negative.

• Xi = {x 2 S : x1
t � 0,�eit  x2

t  0}
• ui : Xi ! R defined by

ui(x) =
1X

t=0

�t
iU(x1

t )

• Aggregate production set

Y = {y 2 S : y1t � 0, y2t  0, y1t = �y2t }

• Allocations, feasible allocations and Pareto e�cient allocations are de-

fined as before.

• A price system � is a continuous linear functional � : S ! R. If �
has inner product representation, we represent it by p = (p1, p2) =

{(p1t , p2t )}1t=0.

• A competitive equilibrium [(xi⇤
)i2I , y,�] for this private ownership econ-

omy defined as before.
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• Note that with constant returns to scale in equilibrium we have �(y⇤) =
0. With inner product representation of the price system in equilibrium

also p1t = p2t = pt. The budget constraint hence becomes

�(x) = p · x =

1X

t=0

2X

i=1

pitx
i
t  0

Obviously (as long as pt > 0 for all t) the consumer will choose xi2
t =

�eit, i.e. sell all his endowment. The budget constraint then takes the

familiar form

1X

t=0

pt(c
i
t � eit)  0

The purpose of this exercise was to demonstrate that, although in the

remaining part of the course we will describe the economy and define an

equilibrium in the first way, whenever we desire to prove the welfare theorems

we can represent any pure exchange economy easily in our formal language

and use the machinery developed in this section (if applicable).

7.6 The First Welfare Theorem

The first welfare theorem states that every competitive equilibrium allocation

is Pareto optimal. The only assumption that is required is that people’s

preferences be locally nonsatiated. The proof of the theorem is unchanged

from the one you should be familiar with from micro last quarter

Theorem 76 Suppose that for all i, all x 2 Xi there exists a sequence
{xn}1n=0 in Xi converging to x with u(xn) > u(x) for all n (local nonsa-
tiation). If an allocation [(x0

i )i2I , (y
0
j )j2J ] and a continuous linear functional

� constitute a competitive equilibrium, then the allocation [(x0
i )i2I , (y

0
j )j2J ] is

Pareto optimal.

Proof. The proof is by contradiction. Suppose [(x0
i )i2I , (y

0
j )j2J ], � is a

competitive equilibrium.

Step 1: We show that for all i, all x 2 Xi, u(x) � u(x0
i ) implies �(x) �

�(x0
i ). Suppose not, i.e. suppose there exists i and x 2 Xi with u(x) � u(x0

i )

and �(x) < �(x0
i ). Let {xn} in Xi be a sequence converging to x with u(xn) >
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u(x) for all n. Such a sequence exists by our local nonsatiation assumption.

By continuity of � there exists an n such that u(xn) > u(x) � u(x0
i ) and

�(xn) < �(x0
i ), violating the fact that x0

i is part of a competitive equilibrium.

Step 2: For all i, all x 2 Xi, u(x) > u(x0
i ) implies �(x) > �(x0

i ). This
follows directly from the fact that x0

i is part of a competitive equilibrium.

Step 3: Now suppose [(x0
i )i2I , (y

0
j )j2J ] is not Pareto optimal. Then there

exists another feasible allocation [(x⇤
i )i2I , (y

⇤
j )j2J ] such that u(x⇤

i ) � u(x0
i )

for all i and with strict inequality for some i. Since [(x0
i )i2I , (y

0
j )j2J ] is a

competitive equilibrium allocation, by step 1 and 2 we have

�(x⇤
i ) � �(x0

i )

for all i, with strict inequality for some i. Summing up over all individuals

yields X

i2I

�(x⇤
i ) >

X

i2I

�(x0
i ) < 1

The last inequality comes from the fact that the set of people I is finite and

that for all i, �(x0
i ) is finite (otherwise the consumer maximization problem

has no solution). By linearity of � we have

�

 
X

i2I

x⇤
i

!
=

X

i2I

�(x⇤
i ) >

X

i2I

�(x0
i ) = �

 
X

i2I

x0
i

!

Since both allocations are feasible we have that

X

i2I

x0
i =

X

j2J

y0j

X

i2I

x⇤
i =

X

j2J

y⇤j

and hence

�

 
X

j2J

y⇤j

!
> �

 
X

j2J

y0j

!

Again by linearity of �

X

j2J

�(y⇤j ) >
X

j2J

�(y0j )
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Figure 7.1: Separating Hyperplanes in the Second Welfare Theorem

and hence for at least one j 2 J, �(y⇤j ) > �(y0j ). But y⇤j 2 Yj and we ob-

tain a contradiction to the hypothesis that [(x0
i )i2I , (y

0
j )j2J ] is a competitive

equilibrium allocation.

Several remarks are in order. It is crucial for the proof that the set of

individuals is finite, as will be seen in our discussion of overlapping genera-

tions economies. Also our equilibrium definition seems odd as it makes no

reference to endowments or ownership in the budget constraint. For the pre-

ceding theorem, however, this is not a shortcoming. Since we start with a

competitive equilibrium we know the value of each individual’s consumption

allocation. By local nonsatiation each consumer exhausts her budget and

hence we implicitly know each individual’s income (the value of endowments

and firm ownership, if specified in a private ownership economy).

7.7 The Second Welfare Theorem

The second welfare theorem provides a converse to the first welfare theorem.

Under suitable assumptions it states that for any Pareto-optimal allocation

there exists a price system such that the allocation together with the price

system form a competitive equilibrium. It may at first be surprising that the

second welfare theorem requires much more stringent assumptions than the

first welfare theorem. Remember, however, that in the first welfare theorem

we start with a competitive equilibrium whereas in the proof of the second

welfare we have to carry out an existence proof. Comparing the assumptions

of the second welfare theorem with those of existence theorems makes clear

the intimate relation between them.

As in micro we will use a separating hyperplane theorem to establish

the existence of a price system that decentralizes a given allocation [x, y].
The price system is nothing else than a hyperplane that separates the aggre-

gate production set from the set of consumption allocations that are jointly

preferred by all consumers. Figure 6 illustrates this general principle.

In lieu of Figure 6 it is not surprising that several convexity assumptions

have to be made to prove the second welfare theorem. We will come back

to this when we discuss each specific assumption. First we state the sepa-

rating hyperplane that we will use for our proof. Obviously we can’t use the
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standard theorems commonly used in micro

4
since our commodity space in

a general real vector space (possibly infinite dimensional).

We will apply the geometric form of the Hahn-Banach theorem. For this

we need the following definition

Definition 77 Let S be a normed real vector space with norm kkS . Define
by

b(x, ") = {s 2 S : kx� skS < "}
the open ball of radius " around x. The interior of a set A ✓ S, Å is defined
to be

Å = {x 2 A : 9" > 0 with b(x, ") ✓ A}
Hence the interior of a set A consists of all the points in A for which we

can find a open ball (no matter how small) around the point that lies entirely

in A. We then have the following

Theorem 78 (Geometric Form of the Hahn-Banach Theorem): Let A, Y ⇢
S be convex sets and assume that

either Y has an interior point and A \ Y̊ = ;
or S is finite dimensional and A \ Y = ;

Then there exists a continuous linear functional �, not identically zero on S,
and a constant c such that

�(y)  c  �(x) for all x 2 A and all y 2 Y

For the proof of the Hahn-Banach theorem in its several forms see Luen-

berger (1969), p. 111 and p. 133. For the case that S is finite dimensional

this theorem is rather intuitive in light of Figure 6. But since we are in-

terested in commodity spaces with infinite dimensions (typically S = lp, for
p 2 [1,1]), we usually have to prove that the aggregate production set Y has

an interior point in order to apply the Hahn-Banach theorem. We will two

things now: a) prove by example that the requirement of an interior point is

an assumption that cannot be dispensed with if S is not finite dimensional

b) show that this assumption de facto rules out using S = lp, for p 2 [1,1),
as commodity space when one wants to apply the second welfare theorem.

For the first part consider the following

4See MasColell et al., p. 948. This theorem is usually attributed to Minkowski.
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Example 79 Consider as commodity space

S = {{xt}1t=0 : xt 2 R for all t, kxkS =

1X

t=0

�t|xt| < 1}

for some � 2 (0, 1). Let A = {✓} and

Y = {x 2 S : |xt|  1 for all t}
Obviously A,B ⇢ S are convex sets. In some sense ✓ = (0, 0, . . . , 0, . . .) lies
in the middle of Y, but it does not lie in the interior of Y. Suppose it did,
then there exists " > 0 such that for all x 2 S such that

kx� ✓kS =

1X

t=0

�t|xt| < "

we have x 2 Y. But for any " > 0, define t(") =

ln( "2 )

ln(�) + 1. Then x =

(0, 0, . . . , xt(") = 2, 0, . . .) /2 Y satisfies
P1

t=0 �
t|xt| = 2�t(") < ". Since this is

true for all " > 0, this shows that ✓ is not in the interior of Y, or A\Y̊= ;. A
very similar argument shows that no s 2 S is in the interior of Y, i.e. Y̊= ;.
Hence the only hypothesis for the Hahn-Banach theorem that fails is that Y
has an interior point. We now show that the conclusion of the theorem fails.
Suppose, to the contrary, that there exists a continuous linear functional �
on S with �(s) 6= 0 for some s̄ 2 S and

�(y)  c  �(✓) for all y 2 Y

Obviously �(✓) = �(0 · s̄) = 0 by linearity of �. Hence it follows that for
all y 2 Y, �(y)  0. Now suppose there exists ȳ 2 Y such that �(ȳ) < 0.
But since �ȳ 2 Y, by linearity �(�ȳ) = ��(ȳ) > 0 a contradiction. Hence
�(y) = 0 for all y 2 Y. From this it follows that �(s) = 0 for all s 2 S
(why?), contradicting the conclusion of the theorem.

As we will see in the proof of the second welfare theorem, to apply the

Hahn-Banach theorem we have to assure that the aggregate production set

has nonempty interior. The aggregate production set in many application

will be (a subset) of the positive orthant of the commodity space. The

problem with taking lp, p 2 [1,1) as the commodity space is that, as the

next proposition shows, the positive orthant

l+p = {x 2 lp : xt � 0 for all t}
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has empty interior. The good thing about l1 is that is has a nonempty

interior. This justifies why we usually use it (or its k-fold product space) as

commodity space.

Proposition 80 The positive orthant of lp, p 2 [0,1) has an empty interior.
The positive orthant of l1 has nonempty interior.

Proof. For the first part suppose there exists x 2 l+p and " > 0 such that

b(x, ") ✓ l+p . Since x 2 lp, xt ! 0, i.e. xt <
"
2 for all t � T ("). Take any

⌧ > T (") and define z as

zt =

⇢
xt if t 6= ⌧

xt � "
2 if t = ⌧

Evidently z⌧ < 0 and hence z /2 l+p . But since

kx� zkp =
 1X

t=0

|xt � zt|p
! 1

p

= |x⌧ � z⌧ | = "

2

< "

we have z 2 b(x, "), a contradiction. Hence the interior of l+p is empty, the

Hahn-Banach theorem doesn’t apply and we can’t use it to prove the second

welfare theorem.

For the second part it su�ces to construct an interior point of l+1. Take
x = (1, 1, . . . , 1, . . .) and " = 1

2 . We want to show that b(x, ") ✓ l+1. Take any
z 2 b(x, "). Clearly zt � 1

2 � 0. Furthermore

sup

t
|zt|  1

1

2

< 1

Hence z 2 l+1.
Now let us proceed with the statement and the proof of the second welfare

theorem. We need the following assumptions

1. For each i 2 I, Xi is convex.

2. For each i 2 I, if x, x0 2 Xi and ui(x) > ui(x0
), then for all � 2 (0, 1)

ui(�x+ (1� �)x0
) > ui(x

0
)

3. For each i 2 I, ui is continuous.



7.7. THE SECOND WELFARE THEOREM 153

4. The aggregate production set Y is convex

5. Either Y has an interior point or S is finite-dimensional.

Note that the second assumption is sometimes referred to as strict quasi-

concavity

5
of the utility functions. It implies that the upper contour sets

Ai
x = {z 2 Xi : ui(z) � ui(x)}

are convex, for all i, all x 2 Xi.Without the convexity assumption 1. assump-

tion 2 would not be well-defined as without convex Xi, �x+(1��)x0 /2 Xi is

possible, in which case ui(�x+ (1� �)x0
) is not well-defined. I mention this

since otherwise 1. is not needed for the following theorem. Also note that it

is assumption 5 that has no counterpart to the theorem in finite dimensions.

It only is required to use the appropriate separating hyperplane theorem in

the proof. With these assumptions we can state the second welfare theorem

Theorem 81 Let [(x0
i ), (y

0
j )] be a Pareto optimal allocation and assume that

for some h 2 I there is a x̂h 2 Xh with uh(x̂h) > uh(x0
h). Then there exists a

continuous linear functional � : S ! R, not identically zero on S, such that

1. for all j 2 J, y0j 2 argmaxy2Yj
�(y)

2. for all i 2 I and all x 2 Xi, ui(x) � ui(x0
i ) implies �(x) � �(x0

i )

Several comments are in order. The theorem states that (under the as-

sumptions of the theorem) any Pareto optimal allocation can be supported

by a price system as a quasi-equilibrium. By definition of Pareto optimality

the allocation is feasible and hence satisfies resource balance. The theorem

also guarantees profit maximization of firms. For consumers, however, it

only guarantees that x0
i minimizes the cost of attaining utility ui(x0

i ), but
not utility maximization among the bundles that cost no more than �(x0

i ),
as would be required by a competitive equilibrium. You also may be used

to a version of this theorem that shows that a Pareto optimal allocation can

be made into an equilibrium with transfers. Since here we haven’t defined

ownership and in the equilibrium definition make no reference to the value

of endowments or firm ownership (i.e. do NOT require the budget constraint

5To me it seems that quasi-concavity is enough for the theorem to hold as quasi-
concavity is equivalent to convex upper contour sets which all one needs in the proof.
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to hold), we can abstract from transfers, too. The proof of the theorem is

similar to the one for finite dimensional commodity spaces.

Proof. Let [(x0
i ), (y

0
j )] be a Pareto optimal allocation and Ai

x0
i
be the

upper contour sets (as defined above) with respect to x0
i , for all i 2 I. Also

let

˚

A

i
x0
i
to be the interior of Ai

x0
i
, i.e.

˚

A

i

x0
i
= {z 2 Xi : ui(z) > ui(x

0
i )}

By assumption 2. the Ai
x0
i
are convex and hence

˚

A

i
x0
i
is convex. Furthermore

x0
i 2 Ai

x0
i
, so the Ai

x0
i
are nonempty. By one of the hypotheses of the theorem

there is some h 2 I there is a x̂h 2 Xh with uh(x̂h) > uh(x0
h). For that h, ˚A

h
x0
h

is nonempty. Define

A =

˚

A

h

x0
h
+

X

i 6=h

Ai
x0
i

A is the set of all aggregate consumption bundles that can be split in such

a way as to give every agent at least as much utility and agent h strictly

more utility than the Pareto optimal allocation [(x0
i ), (y

0
j )]. As A is the sum

of nonempty convex sets, so is A. Obviously A ⇢ S. By assumption Y is

convex. Since [(x0
i ), (y

0
j )] is a Pareto optimal allocation A\Y = ;. Otherwise

there is an aggregate consumption bundle x⇤ 2 A \ Y that can be produced

(as x⇤ 2 Y ) and Pareto dominates x0
(as x⇤ 2 A), contradicting Pareto

optimality of [(x0
i ), (y

0
j )]. With assumption 5. we have all the assumptions

we need to apply the Hahn-Banach theorem. Hence there exists a continuous

linear functional � on S, not identically zero, and a number c such that

�(y)  c  �(x) for all x 2 A, all y 2 Y

It remains to be shown that [(x0
i ), (y

0
j )] together with � satisfy conclusions 1

and 2, i.e. constitute a quasi-equilibrium.

First note that the closure of A is

¯A =

P
i2I A

i
x0
i
since by continuity of uh

(assumption 3.) the closure of

˚

A

h
x0
h
is Ah

x0
h
. Therefore, since � is continuous,

c  �(x) for all x 2 ¯A =

P
i2I A

i
x0
i
.

Second, note that, since [(x0
i ), (y

0
j )] is Pareto optimal, it is feasible and

hence y0 2 Y

x0
=

X

i2I

x0
i =

X

j2J

y0j = y0
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Obviously x0 2 ¯A. Therefore �(x0
) = �(y0)  c  �(x0

) which implies

�(x0
) = �(y0) = c.
To show conclusion 1 fix j 2 J and suppose there exists ỹj 2 Yj such

that �(ỹj) > �(y0j ). For k 6= j define ỹk = y0k. Obviously ỹ =

P
j ỹj 2 Y and

�(ỹ) > �(y0) = c, a contradiction to the fact that �(y)  c for all y 2 Y.
Therefore y0j maximizes �(z) subject to z 2 Yj, for all j 2 J.

To show conclusion 2 fix i 2 I and suppose there exists x̃i 2 Xi with

ui(x̃i) � ui(x0
i ) and �(x̃i) < �(x0

i ). For l 6= i define x̃l = x0
l . Obviously x̃ =P

i x̃i 2 ¯A and �(x̃) < �(x0
) = c, a contradiction to the fact that �(x) � c

for all x 2 ¯A. Therefore x0
i minimizes �(z) subject to ui(z) � ui(x0

i ), z 2 Xi.

We now want to provide a condition that assures that the quasi-equilibrium

in the previous theorem is in fact a competitive equilibrium, i.e. is not only

cost minimizing for the households, but also utility maximizing. This is done

in the following

Remark 82 Let the hypotheses of the second welfare theorem be satisfied and
let � be a continuous linear functional that together with [(x0

i ), (y
0
j )] satisfies

the conclusions of the second welfare theorem. Also suppose that for all i 2 I
there exists x0

i 2 Xi such that

�(x0
i) < �(x0

i )

Then [(x0
i ), (y

0
j ),�] constitutes a competitive equilibrium

Note that, in order to verify the additional condition -the existence of a

cheaper point in the consumption set for each i 2 I- we need a candidate

price system � that already passed the test of the second welfare theorem.

It is not, as the assumptions for the second welfare theorem, an assumptions

on the fundamentals of the economy alone.

Proof. We need to prove that for all i 2 I, all x 2 Xi, �(x)  �(x0
i )

implies ui(x)  ui(x0
i ). Pick an arbitrary i 2 I, x 2 Xi satisfying �(x) 

�(x0
i ). Define

x� = �x0
i + (1� �)x for all � 2 (0, 1)

Since by assumption �(x0
i) < �(x0

i ) and �(x)  �(x0
i ) we have by linearity of

�
�(x�) = ��(x0

i) + (1� �)�(x) < �(x0
i ) for all � 2 (0, 1)
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Figure 7.2: Example for Problems with Second Welfare Theorem

Since xi
0 by assumption is part of a quasi-equilibrium and (by convexity

of Xi we have x� 2 Xi), ui(x�) � ui(x0
i ) implies �(x�) � �(x0

i ), or by

contraposition �(x�) < �(x0
i ) implies ui(x�) < ui(x0

i ) for all � 2 (0, 1). But
then by continuity of ui we have ui(x) = lim�!0 ui(x�)  ui(x0

i ) as desired.

As shown by an example in Stokey et al. the assumption on the existence

of a cheaper point cannot be dispensed with when wanting to make sure that

a quasi-equilibrium is in fact a competitive equilibrium. In Figure 7 we draw

the Edgeworth box of a pure exchange economy. Consumer B’s consump-

tion set is the entire positive orthant, whereas consumer A’s consumption

set is the are above the line marked by �p, as indicated by the broken lines.

Both consumption sets are convex, the upper contour sets are convex and

close as for standard utility functions satisfying assumptions 2. and 3. Point

E clearly represents a Pareto optimal allocation (since at E consumer B’s

utility is globally maximized subject to the allocation being feasible). Fur-

thermore E represents a quasi-equilibrium, since at prices p both consumers

minimize costs subject to attaining at least as much utility as with alloca-

tion E. However, at prices p (obviously the only candidate for supporting E
as competitive equilibrium since tangent to consumer B’s indi↵erence curve

through E) agent A obtains higher utility at allocation E 0
with the same

cost as with E, hence [E, p] is not a competitive equilibrium. The remark

fails because at candidate prices p there is no consumption allocation for A
that is feasible (in XA) and cheaper. This demonstrates that the cheaper-

point assumption cannot be dispensed with in the remark. This concludes

the discussion of the second welfare theorem.

The last thing we want to do in this section is to demonstrate that our

choice of l1 as commodity space is not without problems either. We argued

earlier that lp, p 2 [1,1) is not an attractive alternative. Now we use the

second welfare theorem to show that for certain economies the price system

needed (whose existence is guaranteed by the theorem) need not lie in l1, i.e.
does not have a representation as a vector p = (p0, p1, . . . , pt, . . .). This is bad
in the sense that then the price system we get from the theorem does not

have a natural economic interpretation. After presenting such a pathological

example we will briefly discuss possible remedies.
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Example 83 Let S = l1. There is a single consumer and a single firm. The
aggregate production set is given by

Y = {y 2 S : 0  yt  1 +

1

t
, for all t}

The consumption set is given by

X = {x 2 S : xt � 0 for all t}

The utility function u : X ! R is

u(x) = inf

t
xt

[TO BE COMPLETED]

7.8 Type Identical Allocations

[TO BE COMPLETED]
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Chapter 8

The Overlapping Generations
Model

In this section we will discuss the second major workhorse model of modern

macroeconomics, the Overlapping Generations (OLG) model, due to Allais

(1947), Samuelson (1958) and Diamond (1965). The structure of this section

will be as follows: we will first present a basic pure exchange version of the

OLG model, show how to analyze it and contrast its properties with those of

a pure exchange economy with infinitely lived agents. The basic di↵erences

are that in the OLG model

• competitive equilibria may be Pareto suboptimal

• (outside) money may have positive value

• there may exist a continuum of equilibria

We will demonstrate these properties in detail via examples. We will

then discuss the Ricardian Equivalence hypothesis (the notion that, given

a stream of government spending the financing method of the government

-taxes or budget deficits- does not influence macroeconomic aggregates) for

both the infinitely lived agent model as well as the OLG model. Finally

we will introduce production into the OLG model to discuss the notion of

dynamic ine�ciency. The first part of this section will be based on Kehoe

(1989), Geanakoplos (1989), the second section on Barro (1974) and the

third section on Diamond (1965). Other good sources of information include

Blanchard and Fischer (1989), chapter 3, Sargent and Ljungquist, chapter 8

and Azariadis, chapter 11 and 12.

159



160 CHAPTER 8. THE OVERLAPPING GENERATIONS MODEL

8.1 A Simple Pure Exchange Overlapping Gen-
erations Model

Let’s start by repeating the infinitely lived agent model to which we will

compare the OLG model. Suppose there are I individuals that live forever.

There is one nonstorable consumption good in each period. Individuals order

consumption allocations according to

ui(ci) =
1X

t=0

�t
iU(cit)

Agents have deterministic endowment streams ei = {eit}1t=0. Trade takes place
at period 0. The standard definition of an Arrow-Debreu equilibrium goes

like this:

Definition 84 A competitive equilibrium are prices {pt}1t=0 and allocations
({ĉit}1t=0)i2I such that

1. Given {pt}1t=0, for all i 2 I, {ĉit}1t=0 solves maxci�0 ui(ci) subject to

1X

t=0

pt(c
i
t � eit)  0

2. X

i2I

ĉit =
X

i2I

eit for all t

What are the main shortcomings of this model that have lead to the

development of the OLG model? The first criticism is that individuals ap-

parently do not live forever, so that a model with finitely lived agents is

needed. We will see later that we can give the infinitely lived agent model an

interpretation in which individuals lived only for a finite number of periods,

but, by having an altruistic bequest motive, act so as to maximize the utility

of the entire dynasty, which in e↵ect makes the planning horizon of the agent

infinite. So infinite lives in itself are not as unsatisfactory as it may seem.

But if people live forever, they don’t undergo a life cycle with low-income

youth, high income middle ages and retirement where labor income drops to

zero. In the infinitely lived agent model every period is like the next (which
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makes it so useful since this stationarity renders dynamic programming tech-

niques easily applicable). So in order to analyze issues like social security,

the e↵ect of taxes on retirement decisions, the distributive e↵ects of taxes vs.

government deficits, the e↵ects of life-cycle saving on capital accumulation

one needs a model in which agents experience a life cycle and in which peo-

ple of di↵erent ages live at the same time in the economy. This is why the

OLG model is a very useful tool for applied policy analysis. Because of its

interesting (some say, pathological) theoretical properties, it is also an area

of intense study among economic theorists.

8.1.1 Basic Setup of the Model

Let us describe the model formally now. Time is discrete, t = 1, 2, 3, . . .
and the economy (but not its people) lives forever. In each period there is a

single, nonstorable consumption good. In each time period a new generation

(of measure 1) is born, which we index by its date of birth. People live for two

periods and then die. By (ett, e
t
t+1) we denote generation t’s endowment of the

consumption good in the first and second period of their live and by (ctt, c
t
t+1)

we denote the consumption allocation of generation t. Hence in time t there
are two generations alive, one old generation t� 1 that has endowment et�1

t

and consumption ct�1
t and one young generation t that has endowment ett and

consumption ctt. In addition, in period 1 there is an initial old generation 0

that has endowment e01 and consumes c01. In some of our applications we will

endow the initial generation with an amount of outside money

1 m. We will

NOT assume m � 0. If m � 0, then m can be interpreted straightforwardly

as fiat money, if m < 0 one should envision the initial old people having

borrowed from some institution (which is, however, outside the model) and

m is the amount to be repaid.

In the next Table 1 we demonstrate the demographic structure of the

economy. Note that there are both an infinite number of periods as well as

well as an infinite number of agents in this economy. This “double infinity”

has been cited to be the major source of the theoretical peculiarities of the

OLG model (prominently by Karl Shell).

1Money that is, on net, an asset of the private economy, is “outside money”. This
includes fiat currency issued by the government. In contrast, inside money (such as bank
deposits) is both an asset as well as a liability of the private sector (in the case of deposits
an asset of the deposit holder, a liability to the bank).
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Table 1

Time

G 1 2 . . . t t+ 1

e 0 (c01, e
0
1)

n 1 (c11, e
1
1) (c12, e

1
2)

e

.

.

.

.

.

.

r t� 1 (ct�1
t , et�1

t )

a t (ctt, e
t
t) (ctt+1, e

t
t+1)

t. t+ 1 (ct+1
t+1, e

t+1
t+1)

Preferences of individuals are assumed to be representable by an addi-

tively separable utility function of the form

ut(c) = U(ctt) + �U(ctt+1)

and the preferences of the initial old generation is representable by

u0(c) = U(c01)

We shall assume that U is strictly increasing, strictly concave and twice

continuously di↵erentiable. This completes the description of the economy.

Note that we can easily represent this economy in our formal Arrow-Debreu

language from Chapter 7 since it is a standard pure exchange economy with

infinite number of agents and the peculiar preference and endowment struc-

ture ets = 0 for all s 6= t, t+1 and ut(c) only depending on ctt, c
t
t+1. You should

complete the formal representation as a useful homework exercise.

The following definitions are straightforward

Definition 85 An allocation is a sequence c01, {ctt, ctt+1}1t=1. An allocation is
feasible if ct�1

t , ctt � 0 for all t � 1 and

ct�1
t + ctt = et�1

t + ett for all t � 1

An allocation c01, {(ctt, ctt+1)}1t=1 is Pareto optimal if it is feasible and if there
is no other feasible allocation ĉ10, {(ĉtt, ĉtt+1)}1t=1 such that

ut(ĉ
t
t, ĉ

t
t+1) � ut(c

t
t, c

t
t+1) for all t � 1

u0(ĉ
0
1) � u0(c

0
1)

with strict inequality for at least one t � 0.
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We now define an equilibrium for this economy in two di↵erent ways,

depending on the market structure. Let pt be the price of one unit of the

consumption good at period t. In the presence of money (i.e. m 6= 0) we

will take money to be the numeraire. This is important since we can only

normalize the price of one commoditiy to 1, so with money no further normal-

izations are admissible. Of course, without money we are free to normalize

the price of one other commodity. Keep this in mind for later. We now have

the following

Definition 86 Given m, an Arrow-Debreu equilibrium is an allocation ĉ01, {(ĉtt, ĉtt+1)}1t=1

and prices {pt}1t=1 such that

1. Given {pt}1t=1, for each t � 1, (ĉtt, ĉ
t
t+1) solves

max

(ctt,c
t
t+1)�0

ut(c
t
t, c

t
t+1) (8.1)

s.t. ptc
t
t + pt+1c

t
t+1  pte

t
t + pt+1e

t
t+1 (8.2)

2. Given p1, ĉ01 solves

max

c01

u0(c
0
1)

s.t. p1c
0
1  p1e

0
1 +m (8.3)

3. For all t � 1 (Resource Balance or goods market clearing)

ct�1
t + ctt = et�1

t + ett for all t � 1

As usual within the Arrow-Debreu framework, trading takes place in a

hypothetical centralized market place at period 0 (even though the gener-

ations are not born yet).

2
There is an alternative definition of equilibrium

that assumes sequential trading. Let rt+1 be the interest rate from period

t to period t + 1 and stt be the savings of generation t from period t to pe-

riod t + 1. We will look at a slightly di↵erent form of assets in this section.

2When naming this definition after Arrow-Debreu I make reference to the market struc-
ture that is envisioned under this definition of equilibrium. Others, including Geanakoplos,
refer to a particular model when talking about Arrow-Debreu, the standard general equi-
librium model encountered in micro with finite number of simultaneously living agents. I
hope this does not cause any confusion.
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Previously we dealt with one-period IOU’s that had price qt in period t and
paid out one unit of the consumption good in t + 1 (so-called zero bonds).

Now we consider assets that cost one unit of consumption in period t and
deliver 1 + rt+1 units tomorrow. Equilibria with these two di↵erent assets

are obviously equivalent to each other, but the latter specification is easier

to interpret if the asset at hand is fiat money.

We define a Sequential Markets (SM) equilibrium as follows:

Definition 87 Given m, a sequential markets equilibrium is an allocation
ĉ01, {(ĉtt, ĉtt+1, ŝ

t
t)}1t=1 and interest rates {rt}1t=1 such that

1. Given {rt}1t=1 for each t � 1, (ĉtt, ĉ
t
t+1, ŝ

t
t) solves

max

(ctt,c
t
t+1)�0,stt

ut(c
t
t, c

t
t+1)

s.t. ctt + stt  ett (8.4)

ctt+1  ett+1 + (1 + rt+1)s
t
t (8.5)

2. Given r1, ĉ01 solves

max

c01

u0(c
0
1)

s.t. c01  e01 + (1 + r1)m

3. For all t � 1 (Resource Balance or goods market clearing)

ĉt�1
t + ĉtt = et�1

t + ett for all t � 1 (8.6)

In this interpretation trade takes place sequentially in spot markets for

consumption goods that open in each period. In addition there is an asset

market through which individuals do their saving. Remember that when we

wrote down the sequential formulation of equilibrium for an infinitely lived

consumer model we had to add a shortsale constraint on borrowing (i.e.

st � �A) in order to prevent Ponzi schemes, the continuous rolling over of

higher and higher debt. This is not necessary in the OLG model as people

live for a finite (two) number of periods (and we, as usual, assume perfect

enforceability of contracts)
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Given that the period utility function U is strictly increasing, the budget

constraints (8.4) and (8.5) hold with equality. Take budget constraint (8.5)
for generation t and (8.4) for generation t+ 1 and sum them up to obtain

ctt+1 + ct+1
t+1 + st+1

t+1 = ett+1 + et+1
t+1 + (1 + rt+1)s

t
t

Now use equation (8.6) to obtain

st+1
t+1 = (1 + rt+1)s

t
t

Doing the same manipulations for generation 0 and 1 gives

s11 = (1 + r1)m

and hence, using repeated substitution one obtains

stt = ⇧

t
⌧=1(1 + r⌧ )m (8.7)

This is the market clearing condition for the asset market: the amount of

saving (in terms of the period t consumption good) has to equal the value

of the outside supply of assets, ⇧

t
⌧=1(1 + r⌧ )m. Strictly speaking one should

include condition (8.7) in the definition of equilibrium. By Walras’ law how-

ever, either the asset market or the good market equilibrium condition is

redundant.

There is an obvious sense in which equilibria for the Arrow-Debreu econ-

omy (with trading at period 0) are equivalent to equilibria for the sequential

markets economy. For rt+1 > �1 combine (8.4) and (8.5) into

ctt +
ctt+1

1 + rt+1
= ett +

ett+1

1 + rt+1

Divide (8.2) by pt > 0 to obtain

ctt +
pt+1

pt
ctt+1 = ett +

pt+1

pt
ett+1

Furthermore divide (8.3) by p1 > 0 to obtain

c01  e01 +
m

p1

We then can straightforwardly prove the following proposition
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Proposition 88 Let allocation ĉ01, {(ĉtt, ĉtt+1)}1t=1 and prices {pt}1t=1 consti-
tute an Arrow-Debreu equilibrium with pt > 0 for all t � 1. Then there exists
a corresponding sequential market equilibrium with allocations c̃01, {(c̃tt, c̃tt+1, s̃

t
t)}1t=1

and interest rates {rt}1t=1with

c̃t�1
t = ĉt�1

t for all t � 1

c̃tt = ĉtt for all t � 1

Furthermore, let allocation ĉ01, {(ĉtt, ĉtt+1, ŝ
t
t)}1t=1 and interest rates {rt}1t=1 con-

stitute a sequential market equilibrium with rt > �1 for all t � 0. Then there
exists a corresponding Arrow-Debreu equilibrium with allocations c̃01, {(c̃tt, c̃tt+1)}1t=1

and prices {pt}1t=1 such that

c̃t�1
t = ĉt�1

t for all t � 1

c̃tt = ĉtt for all t � 1

Proof. The proof is similar to the infinite horizon counterpart. Given

equilibrium Arrow-Debreu prices {pt}1t=1 define interest rates as

1 + rt+1 =

pt
pt+1

1 + r1 =

1

p1

and savings

s̃tt = ett � ĉtt

It is straightforward to verify that the allocations and prices so constructed

constitute a sequential markets equilibrium.

Given equilibrium sequential markets interest rates {rt}1t=1 define Arrow-

Debreu prices by

p1 =

1

1 + r1

pt+1 =

pt
1 + rt+1

Again it is straightforward to verify that the prices and allocations so con-

structed form an Arrow-Debreu equilibrium.

Note that the requirement on interest rates is weaker for the OLG version

of this proposition than for the infinite horizon counterpart. This is due to
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the particular specification of the no-Ponzi condition used. A less stringent

condition still ruling out Ponzi schemes would lead to a weaker condtion in

the proposition for the infinite horizon economy also.

Also note that with this equivalence we have that

⇧

t
⌧=1(1 + r⌧ )m =

m

pt

so that the asset market clearing condition for the sequential markets econ-

omy can be written as

pts
t
t = m

i.e. the demand for assets (saving) equals the outside supply of assets, m.
Note that the demanders of the assets are the currently young whereas the

suppliers are the currently old people. From the equivalence we can also see

that the return on the asset (to be interpreted as money) equals

1 + rt+1 =

pt
pt+1

=

1

1 + ⇡t+1

(1 + rt+1)(1 + ⇡t+1) = 1

rt+1 ⇡ �⇡t+1

where ⇡t+1 is the inflation rate from period t to t + 1. As it should be, the

real return on money equals the negative of the inflation rate.

8.1.2 Analysis of the Model Using O↵er Curves

Unless otherwise noted in this subsection we will focus on Arrow-Debreu

equilibria. Gale (1973) developed a nice way of analyzing the equilibria of a

two-period OLG economy graphically, using o↵er curves. First let us assume

that the economy is stationary in that ett = w1 and ett+1 = w2, i.e. the

endowments are time invariant. For given pt, pt+1 > 0 let by ctt(pt, pt+1) and

ctt+1(pt, pt+1) denote the solution to maximizing (8.1) subject to (8.2) for all
t � 1. Given our assumptions this solution is unique. Let the excess demand

functions y and z be defined by

y(pt, pt+1) = ctt(pt, pt+1)� ett
= ctt(pt, pt+1)� w1

z(pt, pt+1) = ctt+1(pt, pt+1)� w2
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These two functions summarize, for given prices, all implications that con-

sumer optimization has for equilibrium allocations. Note that from the

Arrow-Debreu budget constraint it is obvious that y and z only depend on

the ratio

pt+1

pt
, but not on pt and pt+1 separately (this is nothing else than

saying that the excess demand functions are homogeneous of degree zero in

prices, as they should be). Varying

pt+1

pt
between 0 and 1 (not inclusive) one

obtains a locus of optimal excess demands in (y, z) space, the so called o↵er

curve. Let us denote this curve as

(y, f(y)) (8.8)

where it is understood that f can be a correspondence, i.e. multi-valued.

A point on the o↵er curve is an optimal excess demand function for some
pt+1

pt
2 (0,1). Also note that since ctt(pt, pt+1) � 0 and ctt+1(pt, pt+1) � 0 the

o↵er curve obviously satisfies y(pt, pt+1) � �w1 and z(pt, pt+1) � �w2. Fur-
thermore, since the optimal choices obviously satisfy the budget constraint,

i.e.

pty(pt, pt+1) + pt+1z(pt, pt+1) = 0

z(pt, pt+1)

y(pt, pt+1)
= � pt

pt+1
(8.9)

Equation (8.9) is an equation in the two unknowns (pt, pt+1) for a given

t � 1. Obviously (y, z) = (0, 0) is on the o↵er curve, as for appropriate

prices (which we will determine later) no trade is the optimal trading strat-

egy. Equation (8.9) is very useful in that for a given point on the o↵er

curve (y(pt, pt+1), z(pt, pt+1)) in y-z space with y(pt, pt+1) 6= 0 we can im-

mediately read o↵ the price ratio at which these are the optimal demands.

Draw a straight line through the point (y, z) and the origin; the slope of that

line equals � pt
pt+1

. One should also note that if y(pt, pt+1) is negative, then

z(pt, pt+1) is positive and vice versa. Let’s look at an example

Example 89 Let w1 = ", w2 = 1� ", with " > 0. Also let U(c) = ln(c) and
� = 1. Then the first order conditions imply

ptc
t
t = pt+1c

t
t+1 (8.10)
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Figure 8.1: O↵er Curves in OLG Models

and the optimal consumption choices are

ctt(pt, pt+1) =

1

2

✓
"+

pt+1

pt
(1� ")

◆
(8.11)

ctt+1(pt, pt+1) =

1

2

✓
pt
pt+1

"+ (1� ")

◆
(8.12)

the excess demands are given by

y(pt, pt+1) =

1

2

✓
pt+1

pt
(1� ")� "

◆
(8.13)

z(pt, pt+1) =

1

2

✓
pt
pt+1

"� (1� ")

◆
(8.14)

Note that as pt+1

pt
2 (0,1) varies, y varies between � "

2 and 1 and z varies

between � (1�")
2 and 1. Solving z as a function of y by eliminating pt+1

pt
yields

z =

"(1� ")

4y + 2"
� 1� "

2

for y 2 (�"

2

,1) (8.15)

This is the o↵er curve (y, z) = (y, f(y)). We draw the o↵er curve in Figure
8

The discussion of the o↵er curve takes care of the first part of the equi-

librium definition, namely optimality. It is straightforward to express goods

market clearing in terms of excess demand functions as

y(pt, pt+1) + z(pt�1, pt) = 0 (8.16)

Also note that for the initial old generation the excess demand function is

given by

z0(p1,m) =

m

p1

so that the goods market equilibrium condition for the first period reads as

y(p1, p2) + z0(p1,m) = 0 (8.17)
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Graphically in (y, z)-space equations (8.16) and (8.17) are straight lines

through the origin with slope �1. All points on this line are resource fea-

sible. We therefore have the following procedure to find equilibria for this

economy for a given initial endowment of money m of the initial old genera-

tion, using the o↵er curve (8.8) and the resource feasibility constraints (8.16)
and (8.17).

1. Pick an initial price p1 (note that this is NOT a normalization as in

the infinitely lived agent model since the value of p1 determines the

real value of money

m
p1

the initial old generation is endowed with; we

have already normailzed the price of money). Hence we know z0(p1,m).
From (8.17) this determines y(p1, p2).

2. From the o↵er curve (8.8) we determine z(p1, p2) 2 f(y(p1, p2)). Note
that if f is a correspondence then there are multiple choices for z.

3. Once we know z(p1, p2), from (8.16) we can find y(p2, p3) and so forth.

In this way we determine the entire equilibrium consumption allocation

c01 = z0(p1,m) + w2

ctt = y(pt, pt+1) + w1

ctt+1 = z(pt, pt+1) + w2

4. Equilibrium prices can then be found, given p1 from equation (8.9). Any
initial p1 that induces, in such a way, sequences c01, {(ctt, ctt+1), pt}1t=1

such that the consumption sequence satisfies ct�1
t , ctt � 0 is an equilib-

rium for given money stock. This already indicates the possibility of a

lot of equilibria for this model, a fact that we will demonstrate below.

This algorithm can be demonstrated graphically using the o↵er curve di-

agram. We add the line representing goods market clearing, equation (8.16).
In the (y, z)-plane this is a straight line through the origin with slope �1.
This line intersects the o↵er curve at least once, namely at the origin. Unless

we have the degenerate situation that the o↵er curve has slope �1 at the

origin, there is (at least) one other intersection of the o↵er curve with the

goods clearing line. These intersection will have special significance as they

will represent stationary equilibria. As we will see, there is a load of other

equilibria as well. We will first describe the graphical procedure in general

and then look at some examples. See Figure 9.



8.1. A SIMPLE PURE EXCHANGEOVERLAPPINGGENERATIONSMODEL171

Figure 8.2: Using O↵er Curves in OLG Models

Given any m (for concreteness let m > 0) pick p1 > 0. This determines

z0 =
m
p1

> 0. Find this quantity on the z-axis, representing the excess demand

of the initial old generation. From this point on the z-axis go horizontally to

the goods market line, from there down to the y-axis. The point on the y-axis
represents the excess demand function of generation 1 when young. From this

point y1 = y(p1, p2) go vertically to the o↵er curve, then horizontally to the

z-axis. The resulting point z1 = z(p1, p2) is the excess demand of generation

1 when old. Then back horizontally to the goods market clearing condition

and down yields y2 = y(p2, p3), the excess demand for the second generation

and so on. This way the entire equilibrium consumption allocation can be

constructed. Equilibrium prices are easily found from equilibrium alloca-

tions with (8.9), given p1. In such a way we construct an entire equilibrium

graphically.

Let’s now look at some example.

Example 90 Reconsider the example with isoelastic utility above. We found
the o↵er curve to be

z =

"(1� ")

4y + 2"
� 1� "

2

for y 2 (�"

2

,1)

The goods market equilibrium condition is

y + z = 0

Now let’s construct an equilibrium for the case m = 0, for zero supply of
outside money. Following the procedure outlined above we first find the excess
demand function for the initial old generation z0(m, p1) = 0 for all p1 > 0.
Then from goods market y(p1, p2) = �z0(m, p1) = 0. From the o↵er curve

z(p1, p2) =

"(1� ")

4y(p1, p2) + 2"
� 1� "

2

=

"(1� ")

2"
� 1� "

2

= 0

and continuing we find z(pt, pt+1) = y(pt, pt+1) = 0 for all t � 1. This implies
that the equilibrium allocation is ct�1

t = 1�", ctt = ". In this equilibrium every
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consumer eats his endowment in each period and no trade between generations
takes place. We call this equilibrium the autarkic equilibrium. Obviously we
can’t determine equilibrium prices from equation (8.9). However, the first
order conditions imply that

pt+1

pt
=

ctt
ctt+1

=

"

1� "

For m = 0 we can, without loss of generality, normalize the price of the
first period consumption good p1 = 1. Note again that only for m = 0 this
normalization is innocuous, since it does not change the real value of the
stock of outside money that the initial old generation is endowed with. With
this normalization the sequence {pt}1t=1 defined as

pt =

✓
"

1� "

◆t�1

together with the autarkic allocation form an (Arrow-Debreu)-equilibrium.
Obviously any other price sequence {p̄t} with p̄t = ↵pt for any ↵ > 1, is also
an equilibrium price sequence supporting the autarkic allocation as equilib-
rium. This is not, however, what we mean by the possibility of a continuum
of equilibria in OLG-model, but rather the usual feature of standard com-
petitive equilibria that the equilibrium prices are only determined up to one
normalization. In fact, for this example with m = 0, the autarkic equilibrium
is the unique equilibrium for this economy.3 This is easily seen. Since the
initial old generation has no money, only its endowments 1 � ", there is no
way for them to consume more than their endowments. Obviously they can
always assure to consume at least their endowments by not trading, and that
is what they do for any p1 > 0 (obviously p1  0 is not possible in equilib-
rium). But then from the resource constraint it follows that the first young
generation must consume their endowments when young. Since they haven’t
saved anything, the best they can do when old is to consume their endow-
ment again. But then the next young generation is forced to consume their
endowments and so forth. Trade breaks down completely. For this allocation
to be an equilibrium prices must be such that at these prices all generations

3The fact that the autarkic is the only equilibrium is specific to pure exchange OLG-
models with agents living for only two periods. Therefore Samuelson (1958) considered
three-period lived agents for most of his analysis.
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actually find it optimal not to trade, which yields the prices below.4

Note that in the picture the second intersection of the o↵er curve with

the resource constraint (the first is at the origin) occurs in the forth orthant.

This need not be the case. If the slope of the o↵er curve at the origin is

less than one, we obtain the picture above, if the slope is bigger than one,

then the second intersection occurs in the second orthant. Let us distinguish

between these two cases more carefully. In general, the price ratio supporting

the autarkic equilibrium satisfies

pt
pt+1

=

U 0
(ett)

�U 0
(ett+1)

=

U 0
(w1)

�U 0
(w2)

and this ratio represents the slope of the o↵er curve at the origin. With this

in mind define the autarkic interest rate (remember our equivalence result

from above) as

1 + r̄ =
U 0

(w1)

�u0
(w2)

Gale (1973) has invented the following terminology: when r̄ < 0 he calls this

the Samueson case, whereas when r̄ � 0 he calls this the classical case.

5
As

4If you look at Sargent and Ljungquist (1999), Chapter 8, you will see that they claim to
construct several equilibria for exactly this example. Note, however, that their equilibrium
definition has as feasibility constraint

c

t�1
t + c

t
t  e

t�1
t + e

t
t

and all the equilibria apart from the autarkic one constructed above have the feature that
for t = 1

c

0
1 + c

1
1 < e

0
1 + e

1
1

which violate feasibility in the way we have defined it. Personally I find the free disposal
assumption not satisfactory; it makes, however, their life easier in some of the examples
to follow, whereas in my discussion I need more handwaving. You’ll see.

5More generally, the Samuelson case is defined by the condition that savings of the
young generation be positive at an interest rate equal to the population growth rate n.

So far we have assumed n = 0, so the Samuelson case requires saving to be positive at
zero interest rate. We stated the condition as r̄ < 0. But if the interest rate at which the
young don’t save (the autarkic allocation) is smaller than zero, then at the higher interest
rate of zero they will save a positive amount, so that we can define the Samuelson case
as in the text, provided that savings are strictly increasing in the interest rate. This in
turn requires the assumption that first and second period consumption are strict gross
substitutes, so that the o↵er curve is not backward-bending. In the homework you will
encounter an example in which this assumption is not satisfied.
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it will turn out and will be demonstrated below autarkic equilibria are not

Pareto optimal in the Samuelson case whereas they are in the classical case.

8.1.3 Ine�cient Equilibria

The preceding example can also serve to demonstrate our first major fea-

ture of OLG economies that sets it apart from the standard infinitely lived

consumer model with finite number of agents: competitive equilibria may be

not be Pareto optimal. For economies like the one defined at the beginning

of the section the two welfare theorems were proved and hence equilibria are

Pareto optimal. Now let’s see that the equilibrium constructed above for the

OLG model may not be.

Note that in the economy above the aggregate endowment equals to 1

in each period. Also note that then the value of the aggregate endowment

at the equilibrium prices, given by

P1
t=1 pt. Obviously, if " < 0.5, then this

sum converges and the value of the aggregate endowment is finite, whereas if

" � 0.5, then the value of the aggregate endowment is infinite. Whether the

value of the aggregate endowment is infinite has profound implications for

the welfare properties of the competitive equilibrium. In particular, using

a similar argument as in the standard proof of the first welfare theorem

you can show (and will do so in the homework) that if

P1
t=1 pt < 1, then

the competitive equilibrium allocation for this economy (and in general for

any pure exchange OLG economy) is Pareto-e�cient. If, however, the value

of the aggregate endowment is infinite (at the equilibrium prices), then the

competitive equilibrium MAY not be Pareto optimal. In our current example

it turns out that if " > 0.5, then the autarkic equilibrium is not Pareto

e�cient, whereas if " = 0.5 it is. Since interest rates are defined as

rt+1 =
pt
pt+1

� 1

" ˙<0.5 implies rt+1 =

1�"
"

� 1 =

1
"
� 2. Hence " < 0.5 implies rt+1 > 0 (the

classical case) and " � 0.5 implies rt+1 < 0. (the Samuelson case). Ine�ciency

is therefore associated with low (negative interest rates). In fact, Balasko and

Shell (1980) show that the autarkic equilibrium is Pareto optimal if and only

if

1X

t=1

tY

⌧=1

(1 + r⌧+1) = +1
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where {rt+1} is the sequence of autarkic equilibrium interest rates.

6
Obvi-

ously the above equation is satisfied if and only if "  0.5.
Let us briefly demonstrate the first claim (a more careful discussion is left

for the homework). To show that for " > 0.5 the autarkic allocation (which

is the unique equilibrium allocation) is not Pareto optimal it is su�cient

to find another feasible allocation that Pareto-dominates it. Let’s do this

graphically in Figure 10. The autarkic allocation is represented by the origin

(excess demand functions equal zero). Consider an alternative allocation

represented by the intersection of the o↵er curve and the resource constraint.

We want to argue that this point Pareto dominates the autarkic allocation.

First consider an arbitrary generation t � 1. Note that the indi↵erence curve
through the origin must lie to the outside of the o↵er curve (they are equal

at the origin, but everywhere else the indi↵erence curve lies below). Why:

the autarkic point can be chosen at all price ratios. Thus a point on the o↵er

6Rather than a formal proof (which is quite involved), let’s develop some intuition for
why low interest rates are associated with ine�ciency. Take the autarkic allocation and
try to construct a Pareto improvement. In particular, give additional �0 > 0 units of
consumption to the initial old generation. This obviously improves this generation’s life.
From resource feasibilty this requires taking away �0 from generation 1 in their first period
of life. To make them not worse of they have to recieve �1 in additional consumption in
their second period of life, with �1 satisfying

�0U
0(e11) = �1�U

0(e12)

or

�1 = �0
U

0(e11)

�U

0(e12)

= �0(1 + r2) > 0

and in general

�t = �0

tY

⌧=1

(1 + r⌧+1)

are the required transfers in the second period of generation t’s life to compensate for
the reduction of first period consumption. Obviously such a scheme does not work if the
economy ends at fine time T since the last generation (that lives only through youth) is
worse o↵. But as our economy extends forever, such an intergenerational transfer scheme
is feasible provided that the �t don’t grow too fast, i.e. if interest rates are su�ciently
small. But if such a transfer scheme is feasible, then we found a Pareto improvement
over the original autarkic allocation, and hence the autarkic equilibrium allocation is not
Pareto e�cient.
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Figure 8.3: Pareto Optimality in OLG Models

curve was chosen when the autarkic allocation was a↵ordable, and therefore

must represent a higher utility. This demonstrates that the alternative point

marked in the figure (which is both on the o↵er curve as well as the resource

constraint, the line with slope -1) is at least as good as the autarkic allocation

for all generations t � 1. What about the initial old generation? In the

autarkic allocation it has c01 = 1� ", or z0 = 0. In the new allocation it has

z0 > 0 as shown in the figure, so the initial old generation is strictly better

o↵ in this new allocation. Hence the alternative allocation Pareto-dominates

the autarkic equilibrium allocation, which shows that this allocation is not

Pareto-optimal. In the homework you are asked to make this argument

rigorous by actually computing the alternative allocation and then arguing

that it Pareto-dominates the autarkic equilibrium.

What in our graphical argument hinges on the assumption that " > 0.5.
Remember that for "  0.5 we have said that the autarkic allocation is

actually Pareto optimal. It turns out that for " < 0.5, the intersection of

the resource constraint and the o↵er curve lies in the fourth orthant instead

of in the second as in Figure 10. It is still the case that every generation

t � 1 at least weakly prefers the alternative to the autarkic allocation. Now,

however, this alternative allocation has z0 < 0, which makes the initial old

generation worse o↵ than in the autarkic allocation, so that the argument

does not work. Finally, for " = 0.5 we have the degenerate situation that the

slope of the o↵er curve at the origin is �1, so that the o↵er curve is tangent

to the resource line and there is no second intersection. Again the argument

does not work and we can’t argue that the autarkic allocation is not Pareto

optimal. It is an interesting optional exercise to show that for " = 0.5 the

autarkic allocation is Pareto optimal.

Now we want to demonstrate the second and third feature of OLG models

that set it apart from standard Arrow-Debreu economies, namely the possi-

bility of a continuum of equilibria and the fact that outside money may have

positive value. We will see that, given the way we have defined our equilibria,

these two issues are intimately linked. So now let us suppose that m 6= 0. In
our discussion we will assume that m > 0, the situation for m < 0 is sym-

metric. We first want to argue that for m > 0 the economy has a continuum

of equilibria, not of the trivial sort that only prices di↵er by a constant, but

that allocations di↵er across equilibria. Let us first look at equilibria that
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are stationary in the following sense:

Definition 91 An equilibrium is stationary if ct�1
t = co, ctt = cy and pt+1

pt
=

a, where a is a constant.

Given that we made the assumption that each generation has the same en-

dowment structure a stationary equilibrium necessarily has to satisfy y(pt, pt+1) =

y, z0(m, p1) = z(pt, pt+1) = z for all t � 1. From our o↵er curve diagram the

only candidates are the autarkic equilibrium (the origin) and any other al-

locations represented by intersections of the o↵er curve and the resource

line. We will discuss the possibility of an autarkic equilibrium with money

later. With respect to other stationary equilibria, they all have to have prices

pt+1

pt
= 1, with p1 such that (

m
p1
,�m

p1
) is on the o↵er curve. For our previous

example, for any m 6= 0 we find the stationary equilibrium by solving for the

intersection of o↵er curve and resource line

y + z = 0

z =

"(1� ")

4y + 2"
� 1� "

2

This yields a second order polynomial in y

�y =

"(1� ")

4y + 2"
� 1� "

2

whose one solution is y = 0 (the autarkic allocation) and the other solution

is y =

1
2 � ", so that z = �1

2 + ". Hence the corresponding consumption

allocation has

ct�1
t = ctt =

1

2

for all t � 1

In order for this to be an equilibrium we need

1

2

= c01 = (1� ") +
m

p1

hence p1 =

m
"�0.5 > 0. Therefore a stationary equilibrium (apart from au-

tarky) only exists for m > 0 and " > 0.5 or m < 0 and " < 0.5. Also note

that the choice of p1 is not a matter of normalization: any multiple of p1 will
not yield a stationary equilibrium. The equilibrium prices supporting the

stationary allocation have pt = p1 for all t � 1. Finally note that this equilib-

rium, since it features

pt+1

pt
= 1, has an inflation rate of ⇡t+1 = �rt+1 = 0. It
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is exactly this equilibrium allocation that we used to prove that, for " > 0.5,
the autarkic equilibrium is not Pareto-e�cient.

How about the autarkic allocation? Obviously it is stationary as ct�1
t =

1 � " and ctt = " for all t � 1. But can it be made into an equilibrium if

m 6= 0. If we look at the sequential markets equilibrium definition there is

no problem: the budget constraint of the initial old generation reads

c01 = 1� "+ (1 + r1)m

So we need r1 = �1. For all other generations the same arguments as without

money apply and the interest sequence satisfying r1 = �1, rt+1 =

1�"
"

� 1

for all t � 1, together with the autarkic allocation forms a sequential market

equilibrium. In this equilibrium the stock of outside money, m, is not valued:
the initial old don’t get any goods in exchange for it and future generations

are not willing to ever exchange goods for money, which results in the autar-

kic, no-trade situation. To make autarky an Arrow-Debreu equilibrium is a

bit more problematic. Again from the budget constraint of the initial old we

find

c01 = 1� "+
m

p1

which, for autarky to be an equilibrium requires p1 = 1, i.e. the price

level is so high in the first period that the stock of money de facto has no

value. Since for all other periods we need

pt+1

pt
=

"
1�"

to support the autarkic

allocation, we have the obscure requirement that we need price levels to

be infinite with well-defined finite price ratios. This is unsatisfactory, but

there is no way around it unless we a) change the equilibrium definition

(see Sargent and Ljungquist) or b) let the economy extend from the infinite

past to the infinite future (instead of starting with an initial old generation,

see Geanakoplos) or c) treat money somewhat as a residual, as something

almost endogenous (see Kehoe) or d) make some consumption good rather

than money the numeraire (with nonmonetary equilibria corresponding to

situations in which money has a price of zero in terms of real consumption

goods). For now we will accept autarky as an equilibrium even with money

and we will treat it as identical to the autarkic equilibrium without money

(because indeed in the sequential markets formulation only r1 changes and in

the Arrow Debreu formulation only p1 changes, although in an unsatisfactory

fashion).
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8.1.4 Positive Valuation of Outside Money

In our construction of the nonautarkic stationary equilibrium we have al-

ready demonstrated our second main result of OLG models: outside money

may have positive value. In that equilibrium the initial old had endowment

1 � " but consumed c01 =

1
2 . If " > 1

2 , then the stock of outside money, m,
is valued in equilibrium in that the old guys can exchange m pieces of in-

trinsically worthless paper for

m
p1

> 0 units of period 1 consumption goods.

7

The currently young generation accepts to transfer some of their endowment

to the old people for pieces of paper because they expect (correctly so, in

equilibrium) to exchange these pieces of paper against consumption goods

when they are old, and hence to achieve an intertemporal allocation of con-

sumption goods that dominates the autarkic allocation. Without the outside

asset, again, this economy can do nothing else but remain in the possibly dis-

mal state of autarky (imagine " = 1 and log-utility). This is why the social

contrivance of money is so useful in this economy. As we will see later, other

institutions (for example a pay-as-you-go social security system) may achieve

the same as money.

Before we demonstrate that, apart from stationary equilibria (two in the

example, usually at least only a finite number) there may be a continuum

of other, nonstationary equilibria we take a little digression to show for the

general infinitely lived agent endowment economies set out at the beginning

of this section money cannot have positive value in equilibrium.

Proposition 92 In pure exchange economies with a finite number of in-
finitely lived agents there cannot be an equilibrium in which outside money is
valued.

Proof. Suppose, to the contrary, that there is an equilibrium {(ĉit)i2I}1t=1, {p̂t}1t=1

for initial endowments of outside money (mi
)i2I such that

P
i2I m

i 6= 0.Given

the assumption of local nonsatiation each consumer in equilibrium satisfies

the Arrow-Debreu budget constraint with equality

1X

t=1

p̂tĉ
i
t =

X

t=1

p̂te
i
t +mi < 1

7In finance lingo money in this equilibrium is a “bubble”. The fundamental value of
an assets is the value of its dividends, evaluated at the equilibrium Arrow-Debreu prices.
An asset is (or has) a bubble if its price does not equal its fundamental value. Obviuosly,
since money doesn’t pay dividends, its fundamental value is zero and the fact that it is
valued positively in equilibrium makes it a bubble.
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Summing over all individuals i 2 I yields

1X

t=1

p̂t
X

i2I

�
ĉit � eit

�
=

X

i2I

mi

But resource feasibility requires

P
i2I (ĉ

i
t � eit) = 0 for all t � 1 and hence

X

i2I

mi
= 0

a contradiction. This shows that there cannot exist an equilibrium in this

type of economy in which outside money is valued in equilibrium. Note that

this result applies to a much wider class of standard Arrow-Debreu economies

than just the pure exchange economies considered in this section.

Hence we have established the second major di↵erence between the stan-

dard Arrow-Debreu general equilibrium model and the OLG model.

Continuum of Equilibria

We will now go ahead and demonstrate the third major di↵erence, the pos-

sibility of a whole continuum of equilibria in OLG models. We will restrict

ourselves to the specific example. Again suppose m > 0 and " > 0.5.8 For

any p1 such that

m
p1

< " � 1
2 > 0 we can construct an equilibrium using our

geometric method before. From the picture it is clear that all these equilib-

ria have the feature that the equilibrium allocations over time converge to

the autarkic allocation, with z0 > z1 > z2 > . . . zt > 0 and limt!1 zt = 0

and 0 > yt > . . . y2 > y1 with limt!1 yt = 0. We also see from the fig-

ure that, since the o↵er curve lies below the -45

0
-line for the part we are

concerned with that

p1
p2

< 1 and

pt
pt+1

< pt�1

pt
< . . . < p1

p2
< 1, implying

that prices are increasing with limt!1 pt = 1. Hence all the nonstationary

equilibria feature inflation, although the inflation rate is bounded above by

⇡1 = �r1 = 1� 1�"
"

= 2� 1
"
> 0. The real value of money, however, declines

to zero in the limit.

9
Note that, although all nonstationary equilibria so con-

structed in the limit converge to the same allocation (autarky), they di↵er

8You should verify that if "  0.5, then r̄ � 0 and the only equilibrium with m > 0
is the autarkic equilibrium in which money has no value. All other possible equilibrium
paths eventually violate nonnegativity of consumption.

9But only in the limit. It is crucial that the real value of money is not zero at finite
t, since with perfect foresight as in this model generation t would anticipate the fact that
money would lose all its value, would not accept it from generation t� 1 and all monetary
equilibria would unravel, with only the autarkic euqilibrium surviving.
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in the sense that at any finite t, the consumption allocations and price ratios

(and levels) di↵er across equilibria. Hence there is an entire continuum of

equilibria, indexed by p1 2 (

m
"�0.5 ,1). These equilibria are arbitrarily close

to each other. This is again in stark contrast to standard Arrow-Debreu

economies where, generically, the set of equilibria is finite and all equilibria

are locally unique.

10
For details consult Debreu (1970) and the references

therein.

Note that, if we are in the Samuelson case r̄ < 0, then (and only then)

all these equilibria are Pareto-ranked.

11
Let the equilibria be indexed by p1.

One can show, by similar arguments that demonstrated that the autarkic

equilibrium is not Pareto optimal, that these equilibria are Pareto-ranked:

let p1, p̂1 2 (

m
"�0.5 ,1) with p1 > p̂1, then the equilibrium corresponding to p̂1

Pareto-dominates the equilibrium indexed by p1. By the same token, the only
Pareto optimal equilibrium allocation is the nonautarkic stationary monetary

equilibrium.

8.1.5 Productive Outside Assets

We have seen that with a positive supply of an outside asset with no intrinsic

value, m > 0, then in the Samuelson case (for which the slope of the o↵er

curve is smaller than one at the autarkic allocation) we have a continuum

of equilibria. Now suppose that, instead of being endowed with intrinsically

useless pieces of paper the initial old are endowed with a Lucas tree that

yields dividends d > 0 in terms of the consumption good in each period. In

a lot of ways this economy seems a lot like the previous one with money.

So it should have the same number and types of equilibria!? The definition

of equilibrium (we will focus on Arrow-Debreu equilibria) remains the same,

apart from the resource constraint which now reads

ct�1
t + ctt = et�1

t + ett + d

10Generically in this context means, for almost all endowments, i.e. the set of possible
values for the endowments for which this statement does not hold is of measure zero.
Local uniquenes means that in for every equilibrium price vector there exists " such that
any "-neighborhood of the price vector does not contain another equilibrium price vector
(apart from the trivial ones involving a di↵erent normalization).

11Again we require the assumption that consumption in the first and the second period
are strict gross substitutes, ruling out backward-bending o↵er curves.
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Figure 8.4: Productive Outside Assets in the OLG Model

and the budget constraint of the initial old generation which now reads

p1c
0
1  p1e

0
1 + d

1X

t=1

pt

Let’s analyze this economy using our standard techniques. The o↵er curve

remains completely unchanged, but the resource line shifts to the right, now

goes through the points (y, z) = (d, 0) and (y, z) = (0, d). Let’s look at Figure

11.

It appears that, as in the case with money m > 0 there are two stationary

and a continuum of nonstationary equilibria. The point (y1, z0) on the o↵er

curve indeed represents a stationary equilibrium. Note that the constant

equilibrium price ratio satisfies

pt
pt+1

= ↵ > 1 (just draw a ray through the

origin and the point and compare with the slope of the resource constraint

which is �1). Hence we have, after normalization of p1 = 1, pt =
�
1
↵

�t�1
and

therefore the value of the Lucas tree in the first period equals

d
1X

t=1

✓
1

↵

◆t�1

< 1

How about the other intersection of the resource line with the o↵er curve,

(y01, z
0
0)? Note that in this hypothetical stationary equilibrium

pt
pt+1

= � < 1,

so that pt =
⇣

1
�

⌘t�1

p1. Hence the period 0 value of the Lucas tree is infinite

and the consumption of the initial old exceed the resources available in the

economy in period 1. This obviously cannot be an equilibrium. Similarly all

equilibrium paths starting at some point z000 converge to this stationary point,

so for all hypothetical nonstationary equilibria we have

pt
pt+1

< 1 for t large

enough and again the value of the Lucas tree remains unbounded, and these

paths cannot be equilibrium paths either. We conclude that in this economy

there exists a unique equilibrium, which, by the way, is Pareto optimal.

This example demonstrates that it is not the existence of a long-lived

outside asset that is responsible for the existence of a continuum of equilibria.

What is the di↵erence? In all monetary equilibria apart from the stationary

nonautarkic equilibrium (which exists for the Lucas tree economy, too) the

price level goes to infinity, as in the hypothetical Lucas tree equilibria that
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Figure 8.5: Endogenous Cycles in OLG Models

turned out not to be equilibria. What is crucial is that money is intrinsically

useless and does not generate real stu↵ so that it is possible in equilibrium

that prices explode, but the real value of the dividends remains bounded.

Also note that we were to introduce a Lucas tree with negative dividends

(the initial old generation is an eternal slave, say, of the government and has

to come up with d in every period to be used for government consumption),

then the existence of the whole continuum of equilibria is restored.

12

8.1.6 Endogenous Cycles

Not only is there a possibility of a continuum of equilibria in the basic OLG-

model, but these equilibria need not take the monotonic form described

above. Instead, equilibria with cycles are possible. In Figure 12 we have

drawn an o↵er curve that is backward bending. In the homework you will

see an example of preferences that yields such a backward bending o↵er curve,

for a rather normal utility function.

Let m > 0 and let p1 be such that z0 =
m
p1
. Using our geometric approach

we find y1 = y(p1, p2) from the resource line, z1 = z(p1, p2) from the o↵er

curve (ignore for the moment the fact that there are several z1 will do; this

merely indicates that the multiplicity of equilibria is of even higher order

than previously demonstrated). From the resource line we find y2 = y(p2, p3)
and from the o↵er curve z2 = z(p2, p3) = z0. After period t = 2 the economy

repeats the cycle from the first two periods. The equilibrium allocation is of

the form

ct�1
t =

⇢
col = z0 � w2 for t odd
coh = z1 � w2 for t even

ctt =

⇢
cyl = y1 � w1 for t odd
cyh = y2 � w1 for t even

12Also note that the fact that in the unique equilibrium limt!1 pt = 0 has to be true
(otherwise the Lucas tree cannot have finite value) implies that this equilibrium cannot
be made into a monetary equilibrium, since limt!1

m
pt

= 1 and the real value of money
would eventually exceed the aggregate endowment of the economy for any m > 0.
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with col < coh, cyl < cyh. Prices satisfy

pt
pt+1

=

⇢
↵h

for t odd
↵l

for t even

⇡t+1 = �rt+1 =

⇢
⇡l < 0 for t odd
⇡h > 0 for t even

Consumption of generations fluctuates in a two period cycle, with odd gen-

erations eating little when young and a lot when old and even generations

having the reverse pattern. Equilibrium returns on money (inflation rates)

fluctuate, too, with returns from odd to even periods being high (low infla-

tion) and returns being low (high inflation) from even to odd periods. Note

that these cycles are purely endogenous in the sense that the environment is

completely stationary: nothing distinguishes odd and even periods in terms

of endowments, preferences of people alive or the number of people. It is

not surprising that some economists have taken this feature of OLG models

to be the basis of a theory of endogenous business cycles (see, for example,

Grandmont (1985)). Also note that it is not particularly di�cult to construct

cycles of length bigger than 2 periods.

8.1.7 Social Security and Population Growth

The pure exchange OLG model renders itself nicely to a discussion of a pay-

as-you-go social security system. It also prepares us for the more complicated

discussion of the same issue once we have introduced capital accumulation.

Consider the simple model without money (i.e. m = 0). Also now assume

that the population is growing at constant rate n, so that for each old person

in a given period there are (1 + n) young people around. Definitions of

equilibria remain unchanged, apart from resource feasibility that now reads

ct�1
t + (1 + n)ctt = et�1

t + (1 + n)ett

or, in terms of excess demands

z(pt�1, pt) + (1 + n)y(pt, pt+1) = 0

This economy can be analyzed in exactly the same way as before with noticing

that in our o↵er curve diagram the slope of the resource line is not �1

anymore, but �(1 + n). We know from above that, without any government
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intervention, the unique equilibrium in this case is the autarkic equilibrium.

We now want to analyze under what conditions the introduction of a pay-

as-you-go social security system in period 1 (or any other date) is welfare-

improving. We again assume stationary endowments ett = w1 and ett+1 = w2

for all t. The social security system is modeled as follows: the young pay

social security taxes of ⌧ 2 [0, w1) and receive social security benefits b when
old. We assume that the social security system balances its budget in each

period, so that benefits are given by

b = ⌧(1 + n)

Obviously the new unique competitive equilibrium is again autarkic with

endowments (w1 � ⌧, w2 + ⌧(1 + n)) and equilibrium interest rates satisfy

1 + rt+1 = 1 + r =
U 0

(w1 � ⌧)

�U 0
(w2 + ⌧(1 + n))

Obviously for any ⌧ > 0, the initial old generation receives a windfall transfer

of ⌧(1+n) > 0 and hence unambiguously benefits from the introduction. For

all other generations, define the equilibrium lifetime utility, as a function of

the social security system, as

V (⌧) = U(w1 � ⌧) + �U(w2 + ⌧(1 + n))

The introduction of a small social security system is welfare improving if and

only if V 0
(⌧), evaluated at ⌧ = 0, is positive. But

V 0
(⌧) = �U 0

(w1 � ⌧) + �U 0
(w2 + ⌧(1 + n))(1 + n)

V 0
(0) = �U 0

(w1) + �U 0
(w2)(1 + n)

Hence V 0
(0) > 0 if and only if

n >
U 0

(w1)

�U 0
(w2)

� 1 = r̄

where r̄ is the autarkic interest rate. Hence the introduction of a (marginal)

pay-as-you-go social security system is welfare improving if and only if the

population growth rate exceeds the equilibrium (autarkic) interest rate, or, to

use our previous terminology, if we are in the Samuelson case where autarky

is not a Pareto optimal allocation. Note that social security has the same
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function as money in our economy: it is a social institution that transfers

resources between generations (backward in time) that do not trade among

each other in equilibrium. In enhancing intergenerational exchange not pro-

vided by the market it may generate allocations that are Pareto superior

to the autarkic allocation, in the case in which individuals private marginal

rate of substitution 1 + r̄ (at the autarkic allocation) falls short of the social

intertemporal rate of transformation 1 + n.
If n > r̄ we can solve for optimal sizes of the social security system an-

alytically in special cases. Remember that for the case with positive money

supply m > 0 but no social security system the unique Pareto optimal alloca-

tion was the nonautarkic stationary allocation. Using similar arguments we

can show that the sizes of the social security system for which the resulting

equilibrium allocation is Pareto optimal is such that the resulting autarkic

equilibrium interest rate is at least equal to the population growth rate, or

1 + n  U 0
(w1 � ⌧)

�U 0
(w2 + ⌧(1 + n))

For the case in which the period utility function is of logarithmic form this

yields

1 + n  w2 + ⌧(1 + n)

�(w1 � ⌧)

⌧ � �

1 + �
w1 � w2

(1 + �)(1 + n)
= ⌧ ⇤(w1, w2, n, �)

Note that ⌧ ⇤ is the unique size of the social security system that maximizes

the lifetime utility of the representative generation. For any smaller size we

could marginally increase the size and make the representative generation

better o↵ and increase the windfall transfers to the initial old. Note, however,

that any ⌧ > ⌧ ⇤ satisfying ⌧  w1 generates a Pareto optimal allocation, too:

the representative generation would be better o↵ with a smaller system, but

the initial old generation would be worse o↵. This again demonstrates the

weak requirements that Pareto optimality puts on an allocation. Also note

that the “optimal” size of social security is an increasing function of first

period income w1, the population growth rate n and the time discount factor

�, and a decreasing function of the second period income w2.
So far we have assumed that the government sustains the social security
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system by forcing people to participate.

13
Now we briefly describe how such

a system may come about if policy is determined endogenously. We make the

following assumptions. The initial old people can decide upon the size of the

social security system ⌧0 = ⌧ ⇤⇤ � 0. In each period t � 1 there is a majority

vote as to whether the current system is to be kept or abolished. If the

majority of the population in period t favors the abolishment of the system,

then ⌧t = 0 and no payroll taxes or social security benefits are paid. If the

vote is in favor of the system, then the young pay taxes ⌧ ⇤⇤ and the old receive

(1+n)⌧ ⇤⇤.We assume that n > 0, so the current young generation determines

current policy. Since current voting behavior depends on expectations about

voting behavior of future generations we have to specify how expectations

about the voting behavior of future generations is determined. We assume

the following expectations mechanism (see Cooley and Soares (1999) for a

more detailed discussion of justifications as well as shortcomings for this

specification of forming expectations):

⌧ et+1 =

⇢
⌧ ⇤⇤ if ⌧t = ⌧ ⇤⇤

0 otherwise

(8.18)

that is, if young individuals at period t voted down the original social security

system then they expect that a newly proposed social security system will

be voted down tomorrow. Expectations are rational if ⌧ et = ⌧t for all t. Let
⌧ = {⌧t}1t=0 be an arbitrary sequence of policies that is feasible (i.e. satisfies

⌧t 2 [0, w1))

Definition 93 A rational expectations politico-economic equilibrium, given
our expectations mechanism is an allocation rule ĉ01(⌧), {(ĉtt(⌧), ĉtt+1(⌧))}, price
rule {p̂t(⌧)} and policies {⌧̂t} such that14

1. for all t � 1, for all feasible ⌧, and given {p̂t(⌧)},

(ĉtt, ĉ
t
t+1) 2 arg max

(ctt,c
t
t+1)�0

V (⌧t, ⌧t+1) = U(ctt) + �U(ctt+1)

s.t. ptc
t
t + pt+1c

t
t+1  pt (w1 � ⌧t) + pt+1 (w2 + (1 + n)⌧t+1)

13This section is not based on any reference, but rather my own thoughts. Please be
aware of this and read with caution.

14The dependence of allocations and prices on ⌧ is implicit from now on.
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2. for all feasible ⌧, and given {p̂t(⌧)},

ĉ01 2 argmax

c01�0
V (⌧0, ⌧1) = U(c01)

s.t. p1c
0
1  p1(w2 + (1 + n)⌧1)

3.

ct�1
t + (1 + n)ctt = w2 + (1 + n)w1

4. For all t � 1

⌧̂t 2 arg max

✓2{0,⌧⇤⇤}
V (✓, ⌧ et+1)

where ⌧ et+1 is determined according to (8.18)

5.

⌧̂0 2 arg max

✓2[0,w1)
V (✓, ⌧̂1)

6. For all t � 1

⌧ et = ⌧̂t

Conditions 1-3 are the standard economic equilibrium conditions for any

arbitrary sequence of social security taxes. Condition 4 says that all agents of

generation t � 1 vote rationally and sincerely, given the expectations mech-

anism specified. Condition 5 says that the initial old generation implements

the best possible social security system (for themselves). Note the constraint

that the initial generation faces in its maximization: if it picks ✓ too high,

the first regular generation (see condition 4) may find it in its interest to vote

the system down. Finally the last condition requires rational expectations

with respect to the formation of policy expectations.

Political equilibria are in general very hard to solve unless one makes

the economic equilibrium problem easy, assumes simple voting rules and

simplifies as much as possible the expectations formation process. I tried to

do all of the above for our discussion. So let find an (the!) political economic

equilibrium. First notice that for any policy the equilibrium allocation will

be autarky since there is no outside asset. Hence we have as equilibrium
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allocations and prices for a given policy ⌧

ct�1
t = w2 + (1 + n)⌧t
ctt = w1 � ⌧t
p1 = 1

pt
pt+1

=

U 0
(w1 � ⌧t)

�U 0
(w2 + (1 + n)⌧t)

Therefore the only equilibrium element to determine are the optimal policies.

Given our expectations mechanism for any choice of ⌧0 = ⌧ ⇤⇤, when would

generation t vote the system ⌧ ⇤⇤ down when young? If it does, given the

expectation mechanism, it would not receive benefits when old (a newly in-

stalled system would be voted down right away, according to the generations’

expectation). Hence

V (0, ⌧ et+1) = V (0, 0) = U(w1) + �U(w2)

Voting to keep the system in place yields

V (⌧ ⇤⇤, ⌧ et+1) = V (⌧ ⇤⇤, ⌧ ⇤⇤) = U(w1 � ⌧ ⇤⇤) + �U(w2 + (1 + n)⌧ ⇤⇤)

and a vote in favor requires

V (⌧ ⇤⇤, ⌧ ⇤⇤) � V (0, 0) (8.19)

But this is true for all generations, including the first regular generation.

Given the assumption that we are in the Samuelson case with n > r̄ there

exists a ⌧ ⇤⇤ > 0 such that the above inequality holds. Hence the initial old

generation can introduce a positive social security system with ⌧0 = ⌧ ⇤⇤ > 0

that is not voted down by the next generation (and hence by no generation)

and creates positive transfers for itself. Obviously, then, the optimal choice

is to maximize ⌧0 = ⌧ ⇤⇤ subject to (8.19), and the equilibrium sequence of

policies satisfies ⌧̂t = ⌧ ⇤⇤ where ⌧ ⇤⇤ > 0 satisfies

U(w1 � ⌧ ⇤⇤) + �U(w2 + (1 + n)⌧ ⇤⇤) = U(w1) + �U(w2)

Note that since the o↵er curve lies everywhere above the indi↵erence curve

through the no-social security endowment point (w1, w2), we know that the

indi↵erence curve thorugh that point intersects the resource line to the north-

west of the intersection of resource line and o↵er curve (in the Samuelson
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case). But this implies that ⌧ ⇤⇤ > ⌧ ⇤ (which was defined as the level of

social security that maximizes lifetime utility of a typical generation). Con-

sequently the politico-equilibrium social security tax rate is bigger than the

one maximizing welfare for the typical generation: by having the right to set

up the system first the initial old can steer the economy to an equilibrium

that is better for them (and worse for all future generations) than the one

implied by tax rate ⌧ ⇤.

8.2 The Ricardian Equivalence Hypothesis

How should the government finance a given stream of government expendi-

tures, say, for a war? There are two principal ways to levy revenues for a

government, namely to tax current generations or to issue government debt

in the form of government bonds the interest and principal of which has

to be paid later.

15
The question then arise what the macroeconomic con-

sequences of using these di↵erent instruments are, and which instrument is

to be preferred from a normative point of view. The Ricardian Equivalence

Hypothesis claims that it makes no di↵erence, that a switch from one instru-

ment to the other does not change real allocations and prices in the economy.

Therefore this hypothesis, is also called Modigliani-Miller theorem of public

finance.

16
It’s origin dates back to the classical economist David Ricardo

(1772-1823). He wrote about how to finance a war with annual expenditures

of £20 millions and asked whether it makes a di↵erence to finance the £20

millions via current taxes or to issue government bonds with infinite maturity

(so-called consols) and finance the annual interest payments of £1 million in

all future years by future taxes (at an assumed interest rate of 5%). His

conclusion was (in “Funding System”) that

in the point of the economy, there is no real di↵erence in either

of the modes; for twenty millions in one payment [or] one million

per annum for ever ... are precisely of the same value

Here Ricardo formulates and explains the equivalence hypothesis, but

immediately makes clear that he is sceptical about its empirical validity

15I will restrict myself to a discussion of real economic models, in which fiat money is
absent. Hence the government cannot levy revenue via seignorage.

16When we discuss a theoretical model, Ricardian equivalence will take the form of a
theorem that either holds or does not hold, depending on the assumptions we make. When
discussing whether Ricardian equivalence holds empirically, I will call it a hypothesis.
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...but the people who pay the taxes never so estimate them,

and therefore do not manage their a↵airs accordingly. We are too

apt to think, that the war is burdensome only in proportion to

what we are at the moment called to pay for it in taxes, without

reflecting on the probable duration of such taxes. It would be

di�cult to convince a man possessed of £20, 000, or any other

sum, that a perpetual payment of £50 per annum was equally

burdensome with a single tax of £1, 000.

Ricardo doubts that agents are as rational as they should, according to

“in the point of the economy”, or that they rationally believe not to live

forever and hence do not have to bear part of the burden of the debt. Since

Ricardo didn’t believe in the empirical validity of the theorem, he has a

strong opinion about which financing instrument ought to be used to finance

the war

war-taxes, then, are more economical; for when they are paid,

an e↵ort is made to save to the amount of the whole expenditure

of the war; in the other case, an e↵ort is only made to save to the

amount of the interest of such expenditure.

Ricardo thought of government debt as one of the prime tortures of

mankind. Not surprisingly he strongly advocates the use of current taxes.

We will, after having discussed the Ricardian equivalence hypothesis, briefly

look at the long-run e↵ects of government debt on economic growth, in or-

der to evaluate whether the phobia of Ricardo (and almost all other classical

economists) about government debt is in fact justified from a theoretical point

of view. Now let’s turn to a model-based discussion of Ricardian equivalence.

8.2.1 Infinite Lifetime Horizon and Borrowing Con-
straints

The Ricardian Equivalence hypothesis is, in fact, a theorem that holds in a

fairly wide class of models. It is most easily demonstrated within the Arrow-

Debreu market structure of infinite horizon models. Consider the simple in-

finite horizon pure exchange model discussed at the beginning of the section.

Now introduce a government that has to finance a given exogenous stream of

government expenditures (in real terms) denoted by {Gt}1t=1. These govern-

ment expenditures do not yield any utility to the agents (this assumption is
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not at all restrictive for the results to come). Let pt denote the Arrow-Debreu
price at date 0 of one unit of the consumption good delivered at period t.
The government has initial outstanding real debt

17
of B1 that is held by the

public. Let bi1 denote the initial endowment of government bonds of agent i.
Obviously we have the restriction

X

i2I

bi1 = B1

Note that bi1 is agent i’s entitlement to period 1 consumption that the gov-

ernment owes to the agent. In order to finance the government expenditures

the government levies lump-sum taxes: let ⌧ it denote the taxes that agent i
pays in period t, denoted in terms of the period t consumption good. We

define an Arrow-Debreu equilibrium with government as follows

Definition 94 Given a sequence of government spending {Gt}1t=1 and initial
government debt B1 and (bi1)i2I an Arrow-Debreu equilibrium are allocations
{(ĉit)i2I}1t=1, prices {p̂t}1t=1 and taxes {(⌧ it )i2I}1t=1 such that

1. Given prices {p̂t}1t=1 and taxes {(⌧ it )i2I}1t=1 for all i 2 I, {ĉit}1t=1 solves

max

{ct}1t=1

1X

t=1

�t�1U(cit) (8.20)

s.t.
1X

t=1

p̂t(ct + ⌧ it ) 
1X

t=1

p̂te
i
t + p̂1b

i
1

2. Given prices {p̂t}1t=1 the tax policy satisfies

1X

t=1

p̂tGt + p̂1B1 =

1X

t=1

X

i2I

p̂t⌧
i
t

3. For all t � 1 X

i2I

ĉit +Gt =

X

i2I

eit

17I.e. the government owes real consumption goods to its citizens.
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In an Arrow-Debreu definition of equilibrium the government, as the

agent, faces a single intertemporal budget constraint which states that the

total value of tax receipts is su�cient to finance the value of all government

purchases plus the initial government debt. From the definition it is clear

that, with respect to government tax policies, the only thing that matters is

the total value of taxes

P1
t=1 p̂t⌧

i
t that the individual has to pay, but not the

timing of taxes. It is then straightforward to prove the Ricardian Equivalence

theorem for this economy.

Theorem 95 Take as given a sequence of government spending {Gt}1t=1

and initial government debt B1, (bi1)i2I . Suppose that allocations {(ĉit)i2I}1t=1,
prices {p̂t}1t=1 and taxes {(⌧ it )i2I}1t=1 form an Arrow-Debreu equilibrium. Let
{(⌧̂ it )i2I}1t=1 be an arbitrary alternative tax system satisfying

1X

t=1

p̂t⌧
i
t =

1X

t=1

p̂t⌧̂
i
t for all i 2 I

Then {(ĉit)i2I}1t=1, {p̂t}1t=1 and {(⌧̂ it )i2I}1t=1 form an Arrow-Debreu equilib-
rium.

There are two important elements of this theorem to mention. First,

the sequence of government expenditures is taken as fixed and exogenously

given. Second, the condition in the theorem rules out redistribution among

individuals. It also requires that the new tax system has the same cost to each

individual at the old equilibrium prices (but not necessarily at alternative

prices).

Proof. This is obvious. The budget constraint of individuals does not

change, hence the optimal consumption choice at the old equilibrium prices

does not change. Obviously resource feasibility is satisfied. The government

budget constraint is satisfied due to the assumption made in the theorem.

A shortcoming of the Arrow-Debreu equilibrium definition and the pre-

ceding theorem is that it does not make explicit the substitution between

current taxes and government deficits that may occur for two equivalent tax

systems {(⌧ it )i2I}1t=1 and {(⌧̂ it )i2I}1t=1. Therefore we will now reformulate this

economy sequentially. This will also allow us to see that one of the main

assumptions of the theorem, the absence of borrowing constraints is crucial

for the validity of the theorem.
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As usual with sequential markets we now assume that markets for the

consumption good and one-period loans open every period. We restrict our-

selves to government bonds and loans with one year maturity, which, in this

environment is without loss of generality (note that there is no risk) and will

not distinguish between borrowing and lending between two agents an agent

an the government. Let rt+1 denote the interest rate on one period loans

from period t to period t+1. Given the tax system and initial bond holdings

each agent i now faces a sequence of budget constraints of the form

cit +
bit+1

1 + rt+1
 eit � ⌧ it + bit (8.21)

with bi1 given. In order to rule out Ponzi schemes we have to impose a

no Ponzi scheme condition of the form bit � �ait(r, e
i, ⌧) on the consumer,

which, in general may depend on the sequence of interest rates as well as the

endowment stream of the individual and the tax system. We will be more

specific about the exact from of the constraint later. In fact, we will see that

the exact specification of the borrowing constraint is crucial for the validity

of Ricardian equivalence.

The government faces a similar sequence of budget constraints of the form

Gt +Bt =

X

i2I

⌧ it +
Bt+1

1 + rt+1
(8.22)

with B1 given. We also impose a condition on the government that rules

out government policies that run a Ponzi scheme, or Bt � �At(r,G, ⌧). The
definition of a sequential markets equilibrium is standard

Definition 96 Given a sequence of government spending {Gt}1t=1 and ini-
tial government debt B1, (bi1)i2I a Sequential Markets equilibrium is allo-

cations {
⇣
ĉit,ˆb

i
t+1

⌘

i2I
}1t=1, interest rates {r̂t+1}1t=1 and government policies

{(⌧ it )i2I , Bt+1}1t=1 such that

1. Given interest rates {r̂t+1}1t=1 and taxes {(⌧ it )i2I}1t=1 for all i 2 I,

{ĉit,ˆbit+1}1t=1 maximizes (8.20) subject to (8.21) and bit+1 � �ait(r̂, e
i, ⌧)

for all t � 1.

2. Given interest rates {r̂t+1}1t=1, the government policy satisfies (8.22)
and Bt+1 � �At(r̂, G) for all t � 1
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3. For all t � 1

X

i2I

ĉit +Gt =

X

i2I

eit

X

i2I

ˆbit+1 = Bt+1

We will particularly concerned with two forms of borrowing constraints.

The first is the so called natural borrowing or debt limit: it is that amount

that, at given sequence of interest rates, the consumer can maximally repay,

by setting consumption to zero in each period. It is given by

ani
t(r̂, e, ⌧) =

1X

⌧=1

eit+⌧ � ⌧ it+⌧Qt+⌧�1
j=t+1(1 + r̂j+1)

where we define

Qt
j=t+1(1 + r̂j+1) = 1. Similarly we set the borrowing limit

of the government at its natural limit

Ant(r̂, ⌧) =
1X

⌧=1

P
i2I ⌧

i
t+⌧Qt+⌧�1

j=t+1(1 + r̂j+1)

The other form is to prevent borrowing altogether, setting a0it(r̂, e) = 0

for all i, t. Note that since there is positive supply of government bonds,

such restriction does not rule out saving of individuals in equilibrium. We

can make full use of the Ricardian equivalence theorem for Arrow-Debreu

economies one we have proved the following equivalence result

Proposition 97 Fix a sequence of government spending {Gt}1t=1 and ini-
tial government debt B1, (bi1)i2I . Let allocations {(ĉit)i2I}1t=1, prices {p̂t}1t=1

and taxes {(⌧ it )i2I}1t=1 form an Arrow-Debreu equilibrium. Then there exists
a corresponding sequential markets equilibrium with the natural debt limits

{
⇣
c̃it,˜b

i
t+1

⌘

i2I
}1t=1, {r̃t}1t=1, {(⌧̃ it )i2I , ˜Bt+1}1t=1 such that

ĉit = c̃it
⌧ it = ⌧̃ it for all i, all t

Reversely, let allocations {
⇣
ĉit,ˆb

i
t+1

⌘

i2I
}1t=1, interest rates {r̂t}1t=1 and govern-

ment policies {(⌧ it )i2I , Bt+1}1t=1 form a sequential markets equilibrium with
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natural debt limits. Suppose that it satisfies

r̂t+1 > �1, for all t � 1

1X

t=1

eit � ⌧ itQt�1
j=1(1 + r̂j+1)

< 1 for all i 2 I

1X

⌧=1

P
i2I ⌧

i
t+⌧Qt+⌧

j=t+1(1 + r̂j+1)
< 1

Then there exists a corresponding Arrow-Debreu equilibrium {(c̃it)i2I}1t=1, {p̃t}1t=1,
{(⌧̃ it )i2I}1t=1 such that

ĉit = c̃it
⌧ it = ⌧̃ it for all i, all t

Proof. The key to the proof is to show the equivalence of the budget

sets for the Arrow-Debreu and the sequential markets structure. Normalize

p̂1 = 1 and relate equilibrium prices and interest rates by

1 + r̂t+1 =
p̂t
p̂t+1

(8.23)

Now look at the sequence of budget constraints and assume that they hold

with equality (which they do in equilibrium, due to the nonsatiation assump-

tion)

ci1 +
bi2

1 + r̂2
= ei1 � ⌧ i1 + bi1 (8.24)

ci2 +
bi3

1 + r̂3
= ei2 � ⌧ i2 + bi2 (8.25)

.

.

.

cit +
bit+1

1 + r̂t+1
= eit � ⌧ it + bit (8.26)

Substituting for bi2 from (8.25) in (8.24) one gets

ci1 + ⌧ i1 � ei1 +
ci2 + ⌧ i2 � ei2

1 + r̂2
+

bi3
(1 + r̂2)(1 + r̂3)

= bi1
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and in general

TX

t=1

ct � etQt�1
j=1(1 + r̂j+1)

+

biT+1QT
j=1(1 + r̂j+1)

= bi1

Taking limits on both sides gives, using (8.23)

1X

t=1

p̂t(c
i
t + ⌧ it � eit) + lim

T!1

biT+1QT
j=1(1 + r̂j+1)

= bi1

Hence we obtain the Arrow-Debreu budget constraint if and only if

lim

T!1

biT+1QT
j=1(1 + r̂j+1)

= lim

T!1
p̂T+1b

i
T+1 � 0

But from the natural debt constraint

p̂T+1b
i
T+1 � �p̂T+1

1X

⌧=1

eit+⌧ � ⌧ it+⌧Qt+⌧�1
j=t+1(1 + r̂j+1)

= �
1X

⌧=T+1

p̂t(e
i
⌧ � ⌧ i⌧ )

= �
1X

⌧=1

p̂t(e
i
⌧ � ⌧ i⌧ ) +

TX

⌧=1

p̂t(e
i
⌧ � ⌧ i⌧ )

Taking limits with respect to both sides and using that by assumption

P1
t=1

eit�⌧ itQt�1
j=1(1+r̂j+1)

=

P1
t=1 p̂t(e

i
⌧ � ⌧ i⌧ ) < 1 we have

lim

T!1
p̂T+1b

i
T+1 � 0

So at equilibrium prices, with natural debt limits and the restrictions posed in

the proposition a consumption allocation satisfies the Arrow-Debreu budget

constraint (at equilibrium prices) if and only if it satisfies the sequence of

budget constraints in sequential markets. A similar argument can be carried

out for the budget constraint(s) of the government. The remainder of the

proof is then straightforward and left to the reader. Note that, given an

Arrow-Debreu equilibrium consumption allocation, the corresponding bond

holdings for the sequential markets formulation are

bit+1 =

1X

⌧=1

ĉit+⌧ + ⌧ it+⌧ � eit+⌧Qt+⌧�1
j=t+1(1 + r̂j+1)
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As a straightforward corollary of the last two results we obtain the Ri-

cardian equivalence theorem for sequential markets with natural debt limits

(under the weak requirements of the last proposition).

18
Let us look at a few

examples

Example 98 (Financing a war) Let the economy be populated by I = 1000

identical people, with U(c) = ln(c), � = 0.5

eit = 1

and G1 = 500 (the war), Gt = 0 for all t > 1. Let b1 = B1 = 0. Consider two
tax policies. The first is a balanced budget requirement, i.e. ⌧1 = 0.5, ⌧t = 0

for all t > 1. The second is a tax policy that tries to smooth out the cost of
the war, i.e. sets ⌧t = ⌧ =

1
3 for all t � 1. Let us look at the equilibrium

for the first tax policy. Obviously the equilibrium consumption allocation (we
restrict ourselves to type-identical allocations) has

ĉit =

⇢
0.5 for t = 1

1 for t � 1

and the Arrow-Debreu equilibrium price sequence satisfies (after normaliza-
tion of p1 = 1) p2 = 0.25 and pt = 0.25 ⇤ 0.5t�2 for all t > 2. The level
of government debt and the bond holdings of individuals in the sequential
markets economy satisfy

Bt = bt = 0 for all t

Interest rates are easily computed as r2 = 3, rt = 1 for t > 2. The bud-
get constraint of the government and the agents are obviously satisfied. Now
consider the second tax policy. Given resource constraint the previous equilib-
rium allocation and price sequences are the only candidate for an equilibrium

18An equivalence result with even less restrictive assumptions can be proved under the
specification of a bounded shortsale constraint

inf
t
b

i
t < 1

instead of the natural debt limit. See Huang and Werner (1998) for details.
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under the new policy. Let’s check whether they satisfy the budget constraints
of government and individuals. For the government

1X

t=1

p̂tGt + p̂1B1 =

1X

t=1

X

i2I

p̂t⌧
i
t

500 =

1

3

1X

t=1

1000p̂t

=

1000

3

(1 + 0.25 +
1X

t=3

0.25 ⇤ 0.5t�2
)

= 500

and for the individual

1X

t=1

p̂t(ct + ⌧ it ) 
1X

t=1

p̂te
i
t + p̂1b

i
1

5

6

+

4

3

1X

t=2

p̂t 
1X

t=1

p̂t

1

3

1X

t=2

p̂t =

1

6

 1

6

Finally, for this tax policy the sequence of government debt and private bond
holdings are

Bt =
2000

3

, b2 =
2

3

for all t � 2

i.e. the government runs a deficit to finance the war and, in later periods,
uses taxes to pay interest on the accumulated debt. It never, in fact, retires
the debt. As proved in the theorem both tax policies are equivalent as the
equilibrium allocation and prices remain the same after a switch from tax to
deficit finance of the war.

The Ricardian equivalence theorem rests on several important assump-

tions. The first is that there are perfect capital markets. If consumers face

binding borrowing constraints (e.g. for the specification requiring bit+1 � 0),

or if, with risk, not a full set of contingent claims is available, then Ricardian

equivalence may fail. Secondly one has to require that all taxes are lump-

sum. Non-lump sum taxes may distort relative prices (e.g. labor income
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taxes distort the relative price of leisure) and hence a change in the timing

of taxes may have real e↵ects. All taxes on endowments, whatever form

they take, are lump-sum, not, however consumption taxes. Finally a change

from one to another tax system is assumed to not redistribute wealth among

agents. This was a maintained assumption of the theorem, which required

that the total tax bill that each agent faces was left unchanged by a change

in the tax system. In a world with finitely lived overlapping generations this

would mean that a change in the tax system is not supposed to redistribute

the tax burden among di↵erent generations.

Now let’s briefly look at the e↵ect of borrowing constraints. Suppose we

restrict agents from borrowing, i.e. impose bit+1 � 0, for all i, all t. For the
government we still impose the old restriction on debt, Bt � �Ant(r̂, ⌧). We

can still prove a limited Ricardian result

Proposition 99 Let {Gt}1t=1 and B1, (bi1)i2I be given and let allocations

{
⇣
ĉit,ˆb

i
t+1

⌘

i2I
}1t=1, interest rates {r̂t+1}1t=1 and government policies {(⌧ it )i2I , Bt+1}1t=1

be a Sequential Markets equilibrium with no-borrowing constraints for which
ˆbit+1 > 0 for all i, t. Let {(⌧̃ it )i2I , ˜Bt+1}1t=1 be an alternative government policy
such that

˜bit+1 =

1X

⌧=t+1

ĉi⌧ + ⌧̃ i⌧ � ei⌧Q⌧
j=t+2(1 + r̂j+1)

� 0 (8.27)

Gt +
˜Bt =

X

i2I

⌧̃ it +
˜Bt+1

1 + r̂t+1
for all t (8.28)

˜Bt+1 � �Ant(r̂, ⌧) (8.29)

1X

⌧=1

⌧̃ i⌧Q⌧�1
j=1(1 + r̂j)

=

1X

⌧=1

⌧ i⌧Q⌧�1
j=1(1 + r̂j+1)

(8.30)

Then {
⇣
ĉit,˜b

i
t+1

⌘

i2I
}1t=1, {r̂t+1}1t=1 and {(⌧̃ it )i2I , ˜Bt+1}1t=1 is also a sequential

markets equilibrium with no-borrowing constraint.

The conditions that we need for this theorem are that the change in the

tax system is not redistributive (condition (8.30)), that the new government

policies satisfy the government budget constraint and debt limit (conditions

(8.28) and (8.29)) and that the new bond holdings of each individual that
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are required to satisfy the budget constraints of the individual at old con-

sumption allocations do not violate the no-borrowing constraint (condition

(8.27)).
Proof. This proposition to straightforward to prove so we will sketch it

here only. Budget constraints of the government and resource feasibility are

obviously satisfied under the new policy. How about consumer optimization?

Given the equilibrium prices and under the imposed conditions both policies

induce the same budget set of individuals. Now suppose there is an i and
allocation {c̄it} 6= {ĉit} that dominates {ĉit}. Since {c̄it} was a↵ordable with

the old policy, it must be the case that the associated bond holdings under

the old policy, {¯bit+1} violated one of the no-borrowing constraints. But

then, by continuity of the price functional and the utility function there is

an allocation {čit} with associated bond holdings {ˇbit+1} that is a↵ordable

under the old policy and satisfies the no-borrowing constraint (take a convex

combination of the {ĉit,ˆbit+1} and the {c̄it,¯bit+1}, with su�cient weight on the

{ĉit,ˆbit+1} so as to satisfy the no-borrowing constraints). Note that for this

to work it is crucial that the no-borrowing constraints are not binding under

the old policy for {ĉit,ˆbit+1}. You should fill in the mathematical details

Let us analyze an example in which, because of the borrowing constraints,

Ricardian equivalence fails.

Example 100 Consider an economy with 2 agents, U i
= ln(c), �i = 0.5,

bi1 = B1 = 0. Also Gt = 0 for all t and endowments are

e1t =

⇢
2 if t odd
1 if t even

e2t =

⇢
1 if t odd
2 if t even

As first tax system consider

⌧ 1t =

⇢
0.5 if t odd

�0.5 if t even

e2t =

⇢ �0.5 if t odd
0.5 if t even

Obviously this tax system balances the budget. The equilibrium allocation
with no-borrowing constraints evidently is the autarkic (after-tax) allocation



202 CHAPTER 8. THE OVERLAPPING GENERATIONS MODEL

cit = 1.5, for all i, t. From the first order conditions we obtain, taking account
the nonnegativity constraint on bit+1 (here �t � 0 is the Lagrange multiplier
on the budget constraint in period t and µt+1 is the Lagrange multiplier on
the nonnegativity constraint for bit+1)

�t�1U 0
(cit) = �t

�tU(cit+1) = �t+1

�t

1 + rt+1
= �t+1 + µt+1

Combining yields

U 0
(cit)

�U 0
(cit+1)

=

�t

�t+1
= 1 + rt+1 +

(1 + rt)µt+1

�t+1

Hence

U 0
(cit)

�U 0
(cit+1)

� 1 + rt+1

= 1 + rt+1 if bit+1 > 0

The equilibrium interest rates are given as rt+1  1, i.e. are indeterminate.
Both agents are allowed to save, and at rt+1 > 1 they would do so (which of
course can’t happen in equilibrium as there is zero net supply of assets). For
any rt+1  1 the agents would like to borrow, but are prevented from doing
so by the no-borrowing constraint, so any of these interest rates is fine as
equilibrium interest rates. For concreteness let’s take rt+1 = 1 for all t.19

Then the total bill of taxes for the first consumer is 1
3 and �1

3 for the second
agent. Now lets consider a second tax system that has ⌧ 11 =

1
3 , ⌧

2
1 = �1

3 and
⌧ it = 0 for all i, t � 2. Obviously now the equilibrium allocation changes to
c1t =

5
3 , c

2
1 =

4
3 and cit = eit for all i, t � 2. Obviously the new tax system

satisfies the government budget constraint and does not redistribute among
agents. However, equilibrium allocations change. Furthermore, equilibrium
interest rate change to r2 =

3
2.5 and rt = 0 for all t � 3. Ricardian equivalence

fails.20

19These are the interest rates that would arise under natural debt limits, too.
20In general it is very hard to solve for equilibria with no-borrowing constraints ana-

lytically, even in partial equilibrium with fixed exogenous interest rates, even more so in
gneral equilibrium. So if the above example seems cooked up, it is, since it is about the
only example I know how to solve without going to the computer. We will see this more
explicitly once we talk about Deaton’s (1991) EC piece.
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8.2.2 Finite Horizon and Operative Bequest Motives

It should be clear from the above discussion that one only obtains a very

limited Ricardian equivalence theorem for OLG economies. Any change in

the timing of taxes that redistributes among generations is in general not

neutral in the Ricardian sense. If we insist on representative agents within

one generation and purely selfish, two-period lived individuals, then in fact

any change in the timing of taxes can’t be neutral unless it is targeted towards

a particular generation, i.e. the tax change is such that it decreases taxes for

the currently young only and increases them for the old next period. Hence,

with su�cient generality we can say that Ricardian equivalence does not hold

for OLG economies with purely selfish individuals.

Rather than to demonstrate this obvious point with another example

we now briefly review Barro’s (1974) argument that under certain condi-

tions finitely lived agents will behave as if they had infinite lifetime. As a

consequence, Ricardian equivalence is re-established. Barro’s (1974) article

“Are Government Bonds Net Wealth?” asks exactly the Ricardian question,

namely does an increase in government debt, financed by future taxes to

pay the interest on the debt increase the net wealth of the private sector?

If yes, then current consumption would increase, aggregate saving (private

plus public) would decrease, leading to an increase in interest rate and less

capital accumulation. Depending on the perspective, countercyclical fiscal

policy

21
is e↵ective against the business cycle (the Keynesian perspective)

or harmful for long term growth (the classical perspective). If, however, the

value of government bonds if completely o↵set by the value of future higher

taxes for each individual, then government bonds are not net wealth of the

private sector, and changes in fiscal policy are neutral.

Barro identified two main sources for why future taxes are not exactly

o↵setting current tax cuts (increasing government deficits): a) finite lives of

agents that lead to intergenerational redistribution caused by a change in the

timing of taxes b) imperfect private capital markets. Barro’s paper focuses

on the first source of nonneutrality.

Barro’s key result is the following: in OLG-models finiteness of lives does

not invalidate Ricardian equivalence as long as current generations are con-

nected to future generations by a chain of operational intergenerational, al-

truistically motivated transfers. These may be transfers from old to young

21By fiscal policy in this section we mean the financing decision of the government for
a given exogenous path of government expenditures.



204 CHAPTER 8. THE OVERLAPPING GENERATIONS MODEL

via bequests or from young to old via social security programs. Let us look

at his formal model.

22

Consider the standard pure exchange OLG model with two-period lived

agents. There is no population growth, so that each member of the old gen-

eration (whose size we normalize to 1) has exactly one child. Agents have

endowment ett = w when young and no endowment when old. There is a

government that, for simplicity, has 0 government expenditures but initial

outstanding government debt B. This debt is denominated in terms of the

period 1 (or any other period) consumption good. The initial old genera-

tion is endowed with these B units of government bonds. We assume that

these government bonds are zero coupon bonds with maturity of one period.

Further we assume that the government keeps its outstanding government

debt constant and we assume a constant one-period real interest rate r on

these bonds.

23
In order to finance the interest payments on government debt

the government taxes the currently young people. The government budget

constraint gives

B

1 + r
+ ⌧ = B

The right hand side is the old debt that the government has to retire in

the current period. On the left hand side we have the revenue from issuing

new debt,

B
1+r

(remember that we assume zero coupon bonds, so

1
1+r

is the

price of one government bond today that pays 1 unit of the consumption

good tomorrow) and the tax revenue. With the assumption of constant

government debt we find

⌧ =

rB

1 + r

and we assume

rB
1+r

< w.
Now let’s turn to the budget constraints of the individuals. Let by att

denote the savings of currently young people for the second period of their

lives and by att+1 denote the savings of the currently old people for the next

generation, i.e. the old people’s bequests. We require bequests to be non-

negative, i.e. att+1 � 0. In our previous OLG models obviously att+1 = 0

was the only optimal choice since individuals were completely selfish. We

22I will present a simplified, pure exchange version of his model to more clearly isolate
his main point.

23This assumption is justified since the resulting equilibrium allocation (there is no
money!) is the autarkic allocation and hence the interest rate always equals the autarkic
interest rate.
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will see below how to induce positive bequests when discussing individuals’

preferences. The budget constraints of a representative generation are then

given by

ctt +
att

1 + r
= w � ⌧

ctt+1 +
att+1

1 + r
= att + at�1

t

The budget constraint of the young are standard; one may just remember

that assets here are zero coupon bonds: spending

att
1+r

on bonds in the current

period yields att units of consumption goods tomorrow. We do not require

att to be positive. When old the individuals have two sources of funds: their

own savings from the previous period and the bequests at�1
t from the previous

generation. They use it to buy own consumption and bequests for the next

generation. The total expenditure for bequests of a currently old individual

is

att+1

1+r
and it delivers funds to her child next period (that has then become

old) of att+1. We can consolidate the two budget constraints to obtain

ctt +
ctt+1

1 + r
+

att+1

(1 + r)2
= w +

at�1
t

1 + r
� ⌧

Since the total lifetime resources available to generation t are given by et =

w+

at�1
t

1+r
� ⌧, the lifetime utility that this generation can attain is determined

by e. The budget constraint of the initial old generation is given by

c01 +
a01

1 + r
= B

With the formulation of preferences comes the crucial twist of Barro. He

assumes that individuals are altruistic and care about the well-being of their

descendant.

24
Altruistic here means that the parents genuinely care about

the utility of their children and leave bequests for that reason; it is not that

the parents leave bequests in order to induce actions of the children that

yield utility to the parents.

25
Preferences of generation t are represented by

ut(c
t
t, c

t
t+1, a

t
t+1) = U(ctt) + �U(ctt+1) + ↵Vt+1(et+1)

24Note that we only assume that the agent cares only about her immediate descendant,
but (possibly) not at all about grandchildren.

25This strategic bequest motive does not necessarily help to reestablish Ricardian equiv-
alence, as Bernheim, Shleifer and Summers (1985) show.



206 CHAPTER 8. THE OVERLAPPING GENERATIONS MODEL

where Vt+1(et+1) is the maximal utility generation t + 1 can attain with

lifetime resources et+1 = w +

att+1

1+r
� ⌧, which are evidently a function of

bequests att+1from generation t.26 We make no assumption about the size of

↵ as compared to �, but assume ↵ 2 (0, 1). The initial old generation has

preferences represented by

u0(c
0
1, a

0
1) = �U(c01) + ↵V1(e1)

The equilibrium conditions for the goods and the asset market are, re-

spectively

ct�1
t + ctt = w for all t � 1

at�1
t + att = B for all t � 1

Now let us look at the optimization problem of the initial old generation

V0(B) = max

c01,a
0
1�0

�
�U(c01) + ↵V1(e1)

 

s.t. c01 +
a01

1 + r
= B

e1 = w +

a01
1 + r

� ⌧

Note that the two constraints can be consolidated to

c01 + e1 = w +B � ⌧ (8.31)

This yields optimal decision rules c01(B) and a01(B) (or e1(B)). Now assume

that the bequest motive is operative, i.e. a01(B) > 0 and consider the Ricar-

dian experiment of government: increase initial government debt marginally

by �B and repay this additional debt by levying higher taxes on the first

young generation. Clearly, in the OLG model without bequest motives such

a change in fiscal policy is not neutral: it increases resources available to the

initial old and reduces resources available to the first regular generation. This

26To formulate the problem recurively we need separability of the utility function with
respect to time and utility of children. The argument goes through without this, but then
it can’t be clarified using recursive methods. See Barro’s original paper for a more general
discussion. Also note that he, in all likelihood, was not aware of the full power of recursive
techniques in 1974. Lucas (1972) seminal paper was probably the first to make full use of
recursive techiques in (macro) economics.
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will change consumption of both generations and interest rate. What hap-

pens in the Barro economy? In order to repay the �B, from the government

budget constraint taxes for the young have to increase by

�⌧ = �B

since by assumption government debt from the second period onwards re-

mains unchanged. How does this a↵ect the optimal consumption and bequest

choice of the initial old generation? It is clear from (8.31) that the optimal

choices for c01 and e1 do not change as long as the bequest motive was op-

erative before.

27
The initial old generation receives additional transfers of

bonds of magnitude �B from the government and increases its bequests a01
by (1 + r)�B so that lifetime resources available to their descendants (and

hence their allocation) is left unchanged. Altruistically motivated bequest

motives just undo the change in fiscal policy. Ricardian equivalence is re-

stored.

This last result was just an example. Now let’s show that Ricardian

equivalence holds in general with operational altruistic bequests. In doing

so we will de facto establish between Barro’s OLG economy and an economy

with infinitely lived consumers and borrowing constraints. Again consider

the problem of the initial old generation (and remember that, for a given tax

rate and wage there is a one-to-one mapping between et+1 and att+1

V0(B) = max

c01, a
0
1 � 0

c01 +
a01
1+r

= B

�
�U(c01) + ↵V1(a

0
1)
 

= max

c01, a
0
1 � 0

c01 +
a01
1+r

= B

8
>>>>>>>>><

>>>>>>>>>:

�U(c01) + ↵ max

c11, c
1
2, a

1
2 � 0, a11

c11 +
a11
1+r

= w � ⌧

c12 +
a12
1+r

= a11 + a01

�
U(c11) + �U(c12) + ↵V2(a

1
2)
 

9
>>>>>>>>>=

>>>>>>>>>;

27If the bequest motive was not operative, i.e. if the constraint a

0
1 � 0 was binding,

then by increasing B may result in an increase in c

0
1 and a decrease in e1.
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But this maximization problem can be rewritten as

max

c01,a
0
1,c

1
1,c

1
2,a

1
2�0,a11

�
�U(c01) + ↵U(c11) + ↵�U(c12) + ↵2V2(a

1
2)
 

s.t. c01 +
a01

1 + r
= B

c11 +
a11

1 + r
= w � ⌧

c12 +
a12

1 + r
= a11 + a01

or, repeating this procedure infinitely many times (which is a valid procedure

only for ↵ < 1), we obtain as implied maximization problem of the initial

old generation

max

{(ct�1
t ,ctt,a

t�1
t )}1t=1�0

(
�U(c01) +

1X

t=1

↵t
�
U(ctt

�
+ �U(ctt+1))

)

s.t. c01 +
a01

1 + r
= B

ctt +
ctt+1

1 + r
+

att+1

(1 + r)2
= w � ⌧ +

at�1
t

1 + r

i.e. the problem is equivalent to that of an infinitely lived consumer that

faces a no-borrowing constraint. This infinitely lived consumer is peculiar in

the sense that her periods are subdivided into two subperiods, she eats twice

a period, ctt in the first subperiod and ctt+1 in the second subperiod, and the

relative price of the consumption goods in the two subperiods is given by

(1 + r). Apart from these reinterpretations this is a standard infinitely lived

consumer with no-borrowing constraints imposed on her. Consequently one

obtains a Ricardian equivalence proposition similar to proposition 99, where

the requirement of “operative bequest motives” is the equivalent to condition

(8.27). More generally, this argument shows that an OLG economy with two

period-lived agents and operative bequest motives is formally equivalent to

an infinitely lived agent model.

Example 101 Suppose we carry out the Ricardian experiment and increase
initial government debt by �B. Suppose the debt is never retired, but the
required interest payments are financed by permanently higher taxes. The tax
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increase that is needed is (see above)

�⌧ =

r�B

1 + r

Suppose that for the initial debt level {(ĉt�1
t , ĉtt, â

t�1
t )}1t=1 together with r̂ is an

equilibrium such that ât�1
t > 0 for all t. It is then straightforward to verify

that {(ĉt�1
t , ĉtt, ã

t�1
t )}1t=1 together with r̂ is an equilibrium for the new debt

level, where
ãt�1
t = ât�1

t + (1 + r̂)�B for all t

i.e. in each period savings increase by the increased level of debt, plus the
provision for the higher required tax payments. Obviously one can construct
much more complicated tax experiments that are neutral in the Ricardian
sense, provided that for the original tax system the non-borrowing constraints
never bind (i.e. that bequest motives are always operative). Also note that
Barro discussed his result in the context of a production economy, an issue
to which we turn next.

8.3 Overlapping Generations Models with Pro-
duction

So far we have ignored production in our discussion of OLG-models. It

may be the case that some of the pathodologies of the OLG-model appear

only in pure exchange versions of the model. Since actual economies feature

capital accumulation and production, these pathodologies then are nothing

to worry about. However, we will find out that, for example, the possibility

of ine�cient competitive equilibria extends to OLG models with production.

The issues of whether money may have positive value and whether there

exists a continuum of equilibria are not easy for production economies and

will not be discussed in these notes.

8.3.1 Basic Setup of the Model

As much as possible I will synchronize the discussion here with the discrete

time neoclassical growth model in Chapter 2 and the pure exchange OLG

model in previous subsections. The economy consists of individuals and firms.

Individuals live for two periods By N t
t denote the number of young people in
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period t, by N t�1
t denote the number of old people at period t. Normalize the

size of the initial old generation to 1, i.e. N0
0 = 1. We assume that people do

not die early, so N t
t = N t

t+1. Furthermore assume that the population grows

at constant rate n, so that N t
t = (1+n)tN0

0 = (1+n)t. The total population
at period t is therefore given by N t�1

t +N t
t = (1 + n)t(1 + 1

1+n
).

The representative member of generation t has preferences over consump-

tion streams given by

u(ctt, c
t
t+1) = U(ctt) + �U(ctt+1)

where U is strictly increasing, strictly concave, twice continuously di↵eren-

tiable and satisfies the Inada conditions. All individuals are assumed to

be purely selfish and have no bequest motives whatsoever. The initial old

generation has preferences

u(c01) = U(c01)

Each individual of generation t � 1 has as endowments one unit of time to

work when young and no endowment when old. Hence the labor force in

period t is of size N t
t with maximal labor supply of 1 ⇤N t

t . Each member of

the initial old generation is endowed with capital stock (1 + n)¯k1 > 0.
Firms has access to a constant returns to scale technology that produces

output Yt using labor input Lt and capital input Kt rented from households

i.e. Yt = F (Kt, Lt). Since firms face constant returns to scale, profits are zero

in equilibrium and we do not have to specify ownership of firms. Also without

loss of generality we can assume that there is a single, representative firm,

that, as usual, behaves competitively in that it takes as given the rental

prices of factor inputs (rt, wt) and the price for its output. Defining the

capital-labor ratio kt =
Kt

Lt
we have by constant returns to scale

yt =
Yt

Lt

=

F (Kt, Lt)

Lt

= F

✓
Kt

Lt

, 1

◆
= f(kt)

We assume that f is twice continuously di↵erentiable, strictly concave and

satisfies the Inada conditions.

8.3.2 Competitive Equilibrium

The timing of events for a given generation t is as follows
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1. At the beginning of period t production takes place with labor of gen-

eration t and capital saved by the now old generation t � 1 from the

previous period. The young generation earns a wage wt

2. At the end of period t the young generation decides how much of the

wage income to consume, ctt, and how much to save for tomorrow, stt.
The saving occurs in form of physical capital, which is the only asset

in this economy

3. At the beginning of period t + 1 production takes place with labor of

generation t+1 and the saved capital of the now old generation t. The
return on savings equals rt+1 � �, where again rt+1 is the rental rate

of capital and � is the rate of depreciation, so that rt+1 � � is the real

interest rate from period t to t+ 1.

4. At the end of period t+1 generation t consumes its savings plus interest

rate, i.e. ctt+1 = (1 + rt+1 � �)stt and then dies.

We now can define a sequential markets equilibrium for this economy

Definition 102 Given ¯k1, a sequential markets equilibrium is allocations
for households ĉ01, {(ĉtt, ĉtt+1, ŝ

t
t)}1t=1, allocations for the firm {( ˆKt, ˆLt)}1t=1 and

prices {(r̂t, ŵt)}1t=1 such that

1. For all t � 1, given (ŵt, r̂t+1), (ĉtt, ĉ
t
t+1, ŝ

t
t) solves

max

ctt,c
t
t+1�0,stt

U(ctt) + �U(ctt+1)

s.t. ctt + stt  ŵt

ctt+1  (1 + r̂t+1 � �)stt

2. Given ¯k1 and r̂1, ĉ01 solves

max

c01�0
U(c01)

s.t. c01  (1 + r̂1 � �)(1 + n)¯k1

3. For all t � 1, given (r̂t, ŵt), ( ˆKt, ˆLt) solves

max

Kt,Lt�0
F (Kt, Lt)� r̂tKt � ŵtLt
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4. For all t � 1

(a) (Goods Market)

N t
t ĉ

t
t +N t�1

t ĉt�1
t +

ˆKt+1 � (1� �) ˆKt = F (

ˆKt, ˆLt)

(b) (Asset Market)

N t
t ŝ

t
t =

ˆKt+1

(c) (Labor Market)

N t
t =

ˆLt

The first two points in the equilibrium definition are completely standard,

apart from the change in the timing convention for the interest rate. For firm

maximization we used the fact that, given that the firm is renting inputs in

each period, the firms intertemporal maximization problem separates into a

sequence of static profit maximization problems. The goods market equilib-

rium condition is standard: total consumption plus gross investment equals

output. The labor market equilibrium condition is obvious. The asset or

capital market equilibrium condition requires a bit more thought: it states

that total saving of the currently young generation makes up the capital

stock for tomorrow, since physical capital is the only asset in this economy.

Alternatively think of it as equating the total supply of capital in form the

saving done by the now young, tomorrow old generation and the total demand

for capital by firms next period.

28
It will be useful to single out particular

equilibria and attach a certain name to them.

Definition 103 A steady state (or stationary equilibrium) is (¯k, s̄, c̄1, c̄2, r̄, w̄)
such that the sequences ĉ01, {(ĉtt, ĉtt+1, ŝ

t
t)}1t=1, {( ˆKt, ˆLt)}1t=1 and {(r̂t, ŵt)}1t=1,

28To define an Arrow-Debreu equilibrium is quite standard here. Let pt the price of
the consumption good at period t, rtpt the nominal rental price of capital and wtpt the
nominal wage. Then the household and the firms problems are in the neoclassical growth
model, in the household problem taking into account that agents only live for two periods.
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defined by

ĉtt = c̄1
ĉt�1
t = c̄2
ŝtt = s̄

r̂t = r̄

ŵt = w̄
ˆKt =

¯k ⇤N t
t

ˆLt = N t
t

are an equilibrium, for given initial condition ¯k1 = ¯k.

In other words, a steady state is an equilibrium for which the allocation

(per capita) is constant over time, given that the initial condition for the

initial capital stock is exactly right. Alternatively it is allocations and prices

that satisfy all the equilibrium conditions apart from possibly obeying the

initial condition.

We can use the goods and asset market equilibrium to derive an equation

that equates saving to investment. By definition gross investment equals

ˆKt+1 � (1 � �) ˆKt, whereas savings equals that part of income that is not

consumed, or

ˆKt+1 � (1� �) ˆKt = F (

ˆKt, ˆLt)�
�
N t

t ĉ
t
t +N t�1

t ĉt�1
t

�

But what is total saving equal to? The currently young save N t
t ŝ

t
t, the cur-

rently old dissave ŝt�1
t�1N

t�1
t�1 = (1��) ˆKt (they sell whatever capital stock they

have left).

29
Hence setting investment equal to saving yields

ˆKt+1 � (1� �) ˆKt = N t
t ŝ

t
t � (1� �) ˆKt

or our asset market equilibrium condition

N t
t ŝ

t
t =

ˆKt+1

29By definition the saving of the old is their total income minus their total consumption.
Their income consists of returns on their assets and hence their total saving is

⇥
(rts

t�1
t�1 � c

t�1
t

⇤
N

t�1
t�1

= �(1� �)st�1
t�1N

t�1
t�1 = �(1� �)Kt
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Now let us start to characterize the equilibrium It will turn out that we

can describe the equilibrium completely by a first order di↵erence equation

in the capital-labor ratio kt. Unfortunately it will have a rather nasty form

in general, so that we can characterize analytic properties of the competitive

equilibrium only very partially. Also note that, as we will see later, the

welfare theorems do not apply so that there is no social planner problem that

will make our lives easier, as was the case in the infinitely lived consumer

model (which I dubbed the discrete-time neoclassical growth model in Section

3).

From now on we will omit the hats above the variables indicating equi-

librium elements as it is understood that the following analysis applies to

equilibrium sequences. From the optimization condition for capital for the

firm we obtain

rt = FK(Kt, Lt) = FK

✓
Kt

Lt

, 1

◆
= f 0

(kt)

because partial derivatives of functions that are homogeneous of degree 1 are

homogeneous of degree zero. Since we have zero profits in equilibrium we

find that

wtLt = F (Kt, Lt)� rtKt

and dividing by Lt we obtain

wt = f(kt)� f 0
(kt)kt

i.e. factor prices are completely determined by the capital-labor ratio. In-

vestigating the households problem we see that its solution is completely

characterized by a saving function (note that given our assumptions on pref-

erences the optimal choice for savings exists and is unique)

stt = s (wt, rt+1)

= s (f(kt)� f 0
(kt)kt, f

0
(kt+1))

so optimal savings are a function of this and next period’s capital stock.

Obviously, once we know stt we know ctt and ctt+1 from the household’s bud-

get constraint. From Walras law one of the market clearing conditions is

redundant. Equilibrium in the labor market is straightforward as

Lt = N t
t = (1 + n)t
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So let’s drop the goods market equilibrium condition.

30
Then the only

condition left to exploit is the asset market equilibrium condition

sttN
t
t = Kt+1

stt =

Kt+1

N t
t

=

N t+1
t+1

N t
t

Kt+1

N t+1
t+1

= (1 + n)
Kt+1

Lt+1

= (1 + n)kt+1

Substituting in the savings function yields our first order di↵erence equation

kt+1 =
s (f(kt)� f 0

(kt)kt, f 0
(kt+1))

1 + n
(8.32)

where the exact form of the saving function obviously depends on the func-

tional form of the utility function U. As starting value for the capital-labor

ratio we have

K1
L1

=

(1+n)k̄1
N1

1
=

¯k1. So in principle we could put equation (8.32)

on a computer and solve for the entire sequence of {kt+1}1t=1 and hence for

the entire equilibrium. Note, however, that equation (8.32) gives kt+1 only

as an implicit function of kt as kt+1 appears on the right hand side of the

equation as well. So let us make an attempt to obtain analytical properties

of this equation. Before, let’s solve an example.

Example 104 Let U(c) = ln(c), n = 0, � = 1 and f(k) = k↵, with ↵ 2
(0, 1). The choice of log-utility is particularly convenient as the income and
substitution e↵ects of an interest change cancel each other out; saving is
independent of rt+1. As we will see later it is crucial whether the income or
substitution e↵ect for an interest change dominates in the saving decision,
i.e. whether

srt+1(wt, rt+1) Q 0

30In the homework you are asked to do the analysis with dropping the asset market
instead of the goods market equilibrium condition. Keep the present analysis in mind
when doing this question.
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But let’s proceed. The saving function for the example is given by

s(wt, rt+1) =

1

2

wt

=

1

2

(k↵
t � ↵k↵

t )

=

1� ↵

2

k↵
t

so that the di↵erence equation characterizing the dynamic equilibrium is given
by

kt+1 =
1� ↵

2

k↵
t

There are two steady states for this di↵erential equation, k0 = 0 and k⇤
=�

1�↵
2

� 1
1�↵ . The first obviously is not an equilibrium as interest rates are in-

finite and no solution to the consumer problem exists. From now on we will
ignore this steady state, not only for the example, but in general. Hence there
is a unique steady state equilibrium associated with k⇤. From any initial con-
dition ¯k1 > 0, there is a unique dynamic equilibrium {kt+1}1t=1 converging to
k⇤ described by the first order di↵erence equation above.

Unfortunately things are not always that easy. Let us return to the gen-

eral first order di↵erence equation (8.32) and discuss properties of the saving

function. Let, us for simplicity, assume that the saving function s is di↵eren-
tiable in both arguments (wt, rt+1).31 Since the saving function satisfies the

first order condition

U 0
(wt � s(wt, rt+1)) = �U 0

((1 + rt+1 � �)s(wt, rt+1)) ⇤ (1 + rt+1 � �)

we use the Implicit Function Theorem (which is applicable in this case) to

obtain

swt(wt, rt+1) =

U 00
(wt � s(wt, rt+1))

U 00
(wt � s(wt, rt+1)) + �U 00

((1 + rt+1 � �)s(wt, rt+1))(1 + rt+1 � �)2
2 (0, 1)

srt+1(wt, rt+1) =

��U 0
((1 + rt+1 � �)s(., .))� �U 00

((1 + rt+1 � �)s(., .))(1 + rt+1 � �)s(., .)

U 00
(wt � s(., .)) + �U 00

((1 + rt+1 � �)s(., .))(1 + rt+1 � �)2
R 0

31One has to invoke the implicit function theorem (and check its conditions) on the first
order condition to insure di↵erentiability of the savings function. See Mas-Colell et al. p.
940-942 for details.
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Figure 8.6: Capital Dynamics in the OLG Model with Production

Given our assumptions optimal saving increases in first period income wt,

but it may increase or decrease in the interest rate. You may verify from the

above formula that indeed for the log-case srt+1(wt, rt+1) = 0. A lot of theo-

retical work focused on the case in which the saving function increases with

the interest rate, which is equivalent to saying that the substitution e↵ect

dominates the income e↵ect (and equivalent to assuming that consumption

in the two periods are strict gross substitutes).

Equation (8.32) traces out a graph in (kt, kt+1) space whose shape we

want to characterize. Di↵erentiating both sides of (8.32) with respect to kt
we obtain

32

dkt+1

dkt
=

�swt(wt, rt+1)f 00
(kt)kt + srt+1(wt, rt+1)f 0

(kt+1)
dkt+1

dkt

1 + n

or rewriting

dkt+1

dkt
=

�swt(wt, rt+1)f 00
(kt)kt

1 + n� srt+1(wt, rt+1)f 00
(kt+1)

Given our assumptions on f the nominator of the above expression is strictly

positive for all kt > 0. If we assume that srt+1 � 0, then the (kt, kt+1)-locus

is upward sloping. If we allow srt+1 < 0, then it may be downward sloping.

Figure 13 shows possible shapes of the (kt, kt+1)-locus under the assump-

tion that srt+1 � 0. We see that even this assumption does not place a lot

of restrictions on the dynamic behavior of our economy. Without further

assumptions it may be the case that, as in case A there is no steady state

with positive capital-labor ratio. Starting from any initial capital-per worker

level the economy converges to a situation with no production over time. It

may be that, as in case C, there is a unique positive steady state k⇤
C and this

steady state is globally stable (for state space excluding 0). Or it is possible

that there are multiple steady states which alternate in being locally stable

(as k⇤
B) and unstable (as k⇤⇤

B ) as in case B. Just about any dynamic behavior

is possible and in order to deduce further qualitative properties we must ei-

ther specify special functional forms or make assumptions about endogenous

variables, something that one should avoid, if possible.

32Again we appeal to the Implicit function theorem that guarantees that kt+1 is a
di↵erentiable function of kt with derivative given below.
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We will proceed however, doing exactly this. For now let’s assume that

there exists a unique positive steady state. Under what conditions is this

steady state locally stable? As suggested by Figure 13 stability requires that

the saving locus intersects the 45

0
-line from above, provided the locus is

upward sloping. A necessary and su�cient condition for local stability at

the assumed unique steady state k⇤
is that

����
�swt(w(k

⇤
), r(k⇤

))f 00
(k⇤

)k⇤

1 + n� srt+1(w(k
⇤
), r(k⇤

))f 00
(k⇤

)

���� < 1

If srt+1 < 0 it may be possible that the slope of the saving locus is nega-

tive. Under the condition above the steady state is still locally stable, but it

exhibits oscillatory dynamics. If we require that the unique steady state is lo-

cally stable and that the dynamic equilibrium is characterized by monotonic

adjustment to the unique steady state we need as necessary and su�cient

condition

0 <
�swt(w(k

⇤
), r(k⇤

))f 00
(k⇤

)k⇤

1 + n� srt+1(w(k
⇤
), r(k⇤

))f 00
(k⇤

)

< 1

The procedure to make su�cient assumptions that guarantee the existence of

a well-behaved dynamic equilibrium and then use exactly these assumption

to deduce qualitative comparative statics results (how does the steady state

change as we change �, n or the like) is called Samuelson’s correspondence

principle, as often exactly the assumptions that guarantee monotonic local

stability are su�cient to draw qualitative comparative statics conclusions.

Diamond (1965) uses Samuelson’s correspondence principle extensively and

we will do so, too, assuming from now on that above inequalities hold.

8.3.3 Optimality of Allocations

Before turning to Diamond’s (1965) analysis of the e↵ect of public debt let us

discuss the dynamic optimality properties of competitive equilibria. Consider

first steady state equilibria. Let c⇤1, c
⇤
2 be the steady state consumption levels

when young and old, respectively, and k⇤
be the steady state capital labor

ratio. Consider the goods market clearing (or resource constraint)

N t
t ĉ

t
t +N t�1

t ĉt�1
t +

ˆKt+1 � (1� �) ˆKt = F (

ˆKt, ˆLt)

Divide by N t
t =

ˆLt to obtain

ĉtt +
ĉt�1
t

1 + n
+ (1 + n)ˆkt+1 � (1� �)ˆkt = f(kt) (8.33)
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and use the steady state allocations to obtain

c⇤1 +
c⇤2

1 + n
+ (1 + n)k⇤ � (1� �)k⇤

= f(k⇤
)

Define c⇤ = c⇤1 +
c⇤2

1+n
to be total (per worker) consumption in the steady

state. We have that

c⇤ = f(k⇤
)� (n+ �)k⇤

Now suppose that the steady state equilibrium satisfies

f 0
(k⇤

)� � < n (8.34)

something that may or may not hold, depending on functional forms and

parameter values. We claim that this steady state is not Pareto optimal.

The intuition is as follows. Suppose that (8.34) holds. Then it is possible to

decrease the capital stock per worker marginally, and the e↵ect on per capita

consumption is

dc⇤

dk⇤ = f 0
(k⇤

)� (n+ �) < 0

so that a marginal decrease of the capital stock leads to higher available

overall consumption. The capital stock is ine�ciently high; it is so high

that its marginal productivity f 0
(k⇤

) is outweighed by the cost of replacing

depreciated capital, �k⇤
and provide newborns with the steady state level

of capital per worker, nk⇤. In this situation we can again pull the Gamov

trick to construct a Pareto superior allocation. Suppose the economy is in

the steady state at some arbitrary date t and suppose that the steady state

satisfies (8.34). Now consider the alternative allocation: at date t reduce the
capital stock per worker to be saved to the next period, kt+1, by a marginal

�k⇤ < 0 to k⇤⇤
= k⇤

+�k⇤
and keep it at k⇤⇤

forever. From (8.33) we obtain

ct = f(kt) + (1� �)kt � (1 + n)kt+1

The e↵ect on per capita consumption from period t onwards is

�ct = �(1 + n)�k⇤ > 0

�ct+⌧ = f 0
(k⇤

)�k⇤
+ [1� � � (1 + n)]�k⇤

= [f 0
(k⇤

)� (� + n)]�k⇤ > 0

In this way we can increase total per capita consumption in every period.

Now we just divide the additional consumption between the two generations
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alive in a given period in such a way that make both generations better o↵,

which is straightforward to do, given that we have extra consumption goods

to distribute in every period. Note again that for the Gamov trick to work it

is crucial to have an infinite hotel, i.e. that time extends to the infinite future.

If there is a last generation, it surely will dislike losing some of its final period

capital (which we assume is eatable as we are in a one sector economy where

the good is a consumption as well as investment good). A construction of a

Pareto superior allocation wouldn’t be possible. The previous discussion can

be summarized in the following proposition

Proposition 105 Suppose a competitive equilibrium converges to a steady
state satisfying (8.34). Then the equilibrium allocation is not Pareto e�cient,
or, as often called, the equilibrium is dynamically ine�cient.

When comparing this result to the pure exchange model we see the direct

parallel: an allocation is ine�cient if the interest rate (in the steady state)

is smaller than the population growth rate, i.e. if we are in the Samuelson

case. In fact, we repeat a much stronger result by Balasko and Shell that

we quoted earlier, but that also applies to production economies. A feasible

allocation is an allocation c01, {ctt, ctt+1, kt+1}1t=1 that satisfies all negativity

constraints and the resource constraint (8.33). Obviously from the allocation

we can reconstruct stt and Kt. Let rt = f 0
(kt) denote the marginal products

of capital per worker. Maintain all assumptions made on U and f and let nt

be the population growth rate from period t� 1 to t. We have the following

result

Theorem 106 Cass (1972)33, Balasko and Shell (1980). A feasible alloca-
tion is Pareto optimal if and only if

1X

t=1

tY

⌧=1

(1 + r⌧+1 � �)

(1 + n⌧+1)
= +1

As an obvious corollary, alluded to before we have that a steady state

equilibrium is Pareto optimal (or dynamically e�cient) if and only if f 0
(k⇤

)�
� � n.

That dynamic ine�ciency is not purely an academic matter is demon-

strated by the following example

33The first reference of this theorem is in fact Cass (1972), Theorem 3.
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Example 107 Consider the previous example with log utility, but now with
population growth n and time discounting �. It is straightforward to compute
the steady state unique steady state as

k⇤
=


�(1� ↵)

(1 + �)(1 + n)

� 1
1�↵

so that

r⇤ =
↵(1 + �)(1 + n)

�(1� ↵)

and the economy is dynamically ine�cient if and only if

↵(1 + �)(1 + n)

�(1� ↵)
� � < n

Let’s pick some reasonable numbers. We have a 2-period OLG model, so let us
interpret one period as 30 years. ↵ corresponds to the capital share of income,
so ↵ = .3 is a commonly used value in macroeconomics. The current yearly
population growth rate in the US is about 1%, so lets pick (1+n) = (1+0.01)30.
Suppose that capital depreciates at around 6% per year, so choose (1� �) =
0.9430. This yields n = 0.35 and � = 0.843. Then for a yearly subjective
discount factor �y � 0.998, the economy is dynamically ine�cient. Dynamic
ine�ciency therefore is definitely more than just a theoretical curiousum. If
the economy features technological progress of rate g, then the condition for
dynamic ine�ciency becomes (approximately) f 0

(k⇤
) < n+�+g. If we assume

a yearly rate of technological progress of 2%, then with the same parameter
values for �y � 0.971 we obtain dynamic ine�ciency. Note that there is a
more immediate way to check for dynamic ine�ciency in an actual economy:
since in the model f 0

(k⇤
)� � is the real interest rate and g + n is the growth

rate of real GDP, one may just check whether the real interest rate is smaller
than the growth rate in long-run averages.

If the competitive equilibrium of the economy features dynamic ine�-

ciency its citizens save more than is socially optimal. Hence government

programs that reduce national saving are called for. We already have dis-

cussed such a government program, namely an unfunded, or pay-as-you-go

social security system. Let’s briefly see how such a program can reduce the

capital stock of an economy and hence leads to a Pareto-superior allocation,
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provided that the initial allocation without the system was dynamically in-

e�cient.

Suppose the government introduces a social security system that taxes

people the amount ⌧ when young and pays benefits of b = (1 + n)⌧ when

old. For simplicity we assume balanced budget for the social security system

as well as lump-sum taxation. The budget constraints of the representative

individual change to

ctt + stt = wt � ⌧

ctt+1 = (1 + rt+1 � �)stt + (1 + n)⌧

We will repeat our previous analysis and first check how individual savings

react to a change in the size of the social security system. The first order

condition for consumer maximization is

U 0
(wt � ⌧ � stt) = �U 0

((1 + rt+1 � �)stt + (1 + n)⌧) ⇤ (1 + rt+1 � �)

which implicitly defines the optimal saving function stt = s(wt, rt+1, ⌧). Again
invoking the implicit function theorem we find that

�U 00
(wt � ⌧ � s(., ., .))

✓
1 +

ds

d⌧

◆

= �U 00
((1 + rt+1 � �)s(., ., .) + (1 + n)⌧) ⇤ (1 + rt+1 � �) ⇤

✓
(1 + rt+1 � �)

ds

d⌧
+ 1 + n

◆

or

ds

d⌧
= s⌧ = �U 00

() + (1 + n)�U 00
(.)(1 + rt+1 � �)

U 00
(.) + �U 00

(.)(1 + rt+1 � �)2
< 0

Therefore the bigger the pay-as-you-go social security system, the smaller

is the private savings of individuals, holding factor prices constant. This

however, is only the partial equilibrium e↵ect of social security. Now let’s

use the asset market equilibrium condition

kt+1 =

s(wt, rt+1, ⌧)

1 + n

=

s (f(kt)� f 0
(kt)kt, f 0

(kt+1, ⌧)

1 + n

Now let us investigate how the equilibrium (kt, kt+1)-locus changes as ⌧
changes. For fixed kt, how does kt+1(kt) changes as ⌧ changes. Again us-

ing the implicit function theorem yields

dkt+1

d⌧
=

srt+1f
00
(kt+1)

dkt+1

d⌧
+ s⌧

1 + n
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Figure 8.7: The Dynamics of the Neoclassical Growth Model

and hence

dkt+1

d⌧
=

s⌧
1 + n� srt+1f

00
(kt+1)

The nominator is negative as shown above; the denominator is positive by

our assumption of monotonic local stability (this is our first application of

Samuelson’s correspondence principle). Hence

dkt+1

d⌧
< 0, the locus (always

under the maintained monotonic stability assumption) tilts downwards, as

shown in Figure 14.

We can conduct the following thought experiment. Suppose the economy

converged to its old steady state k⇤
and suddenly, at period T, the government

unanticipatedly announces the introduction of a (marginal) pay-as-you go

system. The saving locus shifts down, the new steady state capital labor

ratio declines and the economy, over time, converges to its new steady state.

Note that over time the interest rate increases and the wage rate declines. Is

the introduction of a marginal pay-as-you-go social security system welfare

improving? It depends on whether the old steady state capital-labor ratio

was ine�ciently high, i.e. it depends on whether f 0
(k⇤

)� � < n or not. Our

conclusions about the desirability of social security remain unchanged from

the pure exchange model.

8.3.4 The Long-Run E↵ects of Government Debt

Diamond (1965) discusses the e↵ects of government debt on long run cap-

ital accumulation. He distinguishes between government debt that is held

by foreigners, so-called external debt, and government debt that is held by

domestic citizens, so-called internal debt. Note that the second case is iden-

tical to Barro’s analysis if we abstract from capital accumulation and allow

altruistic bequest motives. In fact, in Diamond’s environment with produc-

tion, but altruistic and operative bequests a similar Ricardian equivalence

result as before applies. In this sense Barro’s neutrality result provides the

benchmark for Diamond’s analysis of the internal debt case, and we will see

how the absence of operative bequests leads to real consequences of di↵erent

levels of internal debt.
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External Debt

Suppose the government has initial outstanding debt, denoted in real terms,

of B1. Denote by bt =
Bt

Lt
=

Bt

Nt
t
the debt-labor ratio. All government bonds

have maturity of one period, and the government issues new bonds

34
so as to

keep the debt-labor ratio constant at bt = b over time. Bonds that are issued

in period t � 1, Bt, are required to pay the same gross interest as domestic

capital, namely 1+rt��, in period t when they become due. The government

taxes the current young generation in order to finance the required interest

payments on the debt. Taxes are lump sum and are denoted by ⌧. The budget
constraint of the government is then

Bt(1 + rt � �) = Bt+1 +N t
t ⌧

or, dividing by N t
t , we get, under the assumption of a constant debt-labor

ratio,

⌧ = (rt � � � n)b

For the previous discussion of the model nothing but the budget constraint

of young individuals changes, namely to

ctt + stt = wt � ⌧

= wt � (rt � � � n)b

In particular the asset market equilibrium condition does not change as the

outstanding debt is held exclusively by foreigners, by assumption. As before

we obtain a saving function s(wt � (rt � � � n)b, rt+1) as solution to the

households optimization problem, and the asset market equilibrium condition

reads as before

kt+1 =
s(wt � (rt � � � n)b, rt+1)

1 + n
Our objective is to determine how a change in the external debt-labor ratio

changes the steady state capital stock and the interest rate. This can be

answered by examining s(). Again we will apply Samuelson’s correspondence

principle. Assuming monotonic local stability of the unique steady state is

equivalent to assuming

dkt+1

dkt
=

�swt(., .)f
00
(kt)(kt + b)

1 + n� srt+1(., .)f
00
(kt+1)

2 (0, 1) (8.35)

34As Diamond (1965) let us specify these bonds as interest-bearing bonds (in contrast
to zero-coupon bonds). A bond bought in period t pays (interst plus principal) 1+rt+1��

in period t+ 1.
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In order to determine how the saving locus in (kt, kt+1) space shifts we apply

the Implicit Function Theorem to the asset equilibrium condition to find

dkt+1

db
=

�swt(., .) (f
0
(kt)� � � n)

1 + n� srt+1(., .)f
00
(kt+1)

so the sign of

dkt+1

db
equals the negative of the sign of f 0

(kt) � � � n under

the maintained assumption of monotonic local stability. Suppose we are at

a steady state k⇤
corresponding to external debt to labor ratio b⇤. Now the

government marginally increases the debt-labor ratio. If the old steady state

was not dynamically ine�cient, i.e. f 0
(k⇤

) � � + n, then the saving locus

shifts down and the new steady state capital stock is lower than the old one.

Diamond goes on to show that in this case such an increase in government

debt leads to a reduction in the utility level of a generation that lives in the

new rather than the old steady state. Note however that, because of tran-

sition generations this does not necessarily mean that marginally increasing

external debt leads to a Pareto-inferior allocation. For the case in which

the old equilibrium is dynamically ine�cient an increase in government debt

shifts the saving locus upward and hence increases the steady state capital

stock per worker. Again Diamond shows that now the e↵ects on steady state

utility are indeterminate.

Internal Debt

Now we assume that government debt is held exclusively by own citizens. The

tax payments required to finance the interest payments on the outstanding

debt take the same form as before. Let’s assume that the government issues

new government debt so as to keep the debt-labor ratio

Bt

Lt
constant over time

at

˜b. Hence the required tax payments are given by

⌧ = (rt � � � n)˜b

Again denote the new saving function derived from consumer optimization

by s(wt � (rt � � � n)˜b, rt+1). Now, however, the equilibrium asset market

condition changes as the savings of the young not only have to absorb the

supply of the physical capital stock, but also the supply of government bonds

newly issued. Hence the equilibrium condition becomes

N t
t s(wt � (rt � � � n)˜b, rt+1) = Kt+1 +Bt+1
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or, dividing by N t
t = Lt, we obtain

kt+1 =
s(wt � (rt � � � n)˜b, rt+1)

1 + n
� ˜b

To determine the shift in the saving locus in (kt, kt+1) we again implicitly

di↵erentiate to obtain

dkt+1

d˜b
=

�swt(., .)(rt � � � n) + srt+1f
00
(kt+1)

dkt+1

db̃

1 + n
� 1

and hence

dkt+1

d˜b
=

�swt(., .)(f
0
(kt)� � � n)� (1 + n)

(1 + n)� srt+1f
00
(kt+1)

.

Now we again assume that

dkt+1

dkt
=

�swt(., .)f
00
(kt)(kt +˜b)

1 + n� srt+1(., .)f
00
(kt+1)

= �(kt, kt+1,˜b) 2 (0, 1)

to assure monotonic stability of the steady state. Then

dkt+1

d˜b
=

[�swt(., .)(f
0
(kt)� � � n)� (1 + n)]

(1 + n)� srt+1f
00
(kt+1)

=

"
�(kt, kt+1,˜b)

�f 00
(kt)swt(., .)(kt +˜b)

#
· [swt(., .)(� + n� f 0

(kt))� (1 + n)]

The term in the first brackets is positive since � 2 (0, 1), sw 2 (0, 1) and
�f 00

(kt)(kt +˜b) > 0. The term in the second brackets is negative since

swt(., .)(� + n� f 0
(kt))  swt(., .)(� + n) < 1 + n.

Thus

dkt+1

d˜b
< 0.

The kt+1(kt) curve unambiguously shifts down with an increase in inter-

nal debt

˜b, leading to a decline in the steady state capital stock per worker.

Diamond, again only comparing steady state utilities, shows that if the initial

steady state was dynamically e�cient, then an increase in internal debt leads

to a reduction in steady state welfare, whereas if the initial steady state was
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dynamically ine�cient, then an increase in internal government debt leads

to a increase in steady state welfare. Here the intuition is again clear: if

the economy has accumulated too much capital, then increasing the supply

of alternative assets leads to a interest-driven “crowding out” of demand for

physical capital, which is a good thing given that the economy possesses too

much capital. In the e�cient case the reverse logic applies. In compari-

son with the external debt case we obtain clearer welfare conclusions for the

dynamically ine�cient case. For external debt an increase in debt is not

necessarily good even in the dynamically ine�cient case because it requires

higher tax payments, which, in contrast to internal debt, leave the country

and therefore reduce the available resources to be consumed (or invested).

This negative e↵ect balances against the positive e↵ect of reducing the in-

e�ciently high capital stock, so that the overall e↵ects are indeterminate.

In comparison to Barro (1974) we see that without operative bequests the

level of outstanding government bonds influences real equilibrium allocations:

Ricardian equivalence breaks down.
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Chapter 9

Continuous Time Growth
Theory

I do not see how one can look at figures like these without

seeing them as representing possibilities. Is there some action a

government could take that would lead the Indian economy to

grow like Indonesia’s or Egypt’s? If so, what exactly? If not,

what is it about the nature of India that makes it so? The con-

sequences for human welfare involved in questions like these are

simply staggering: Once one starts to think about them, it is

hard to think about anything else. [Lucas 1988, p. 5]

So much for motivation. We are doing growth in continuous time since

I think you should know how to deal with continuous time models as a

significant fraction of the economic literature employs continuous time, partly

because in certain instances the mathematics becomes easier. In continuous

time, variables are functions of time and one can use calculus to analyze how

they change over time.

9.1 Stylized Growth and Development Facts

Data! Data! Data! I can’t make bricks without clay. [Sherlock

Holmes]

In this part we will briefly review the main stylized facts characteriz-

ing economic growth of the now industrialized countries and the main facts

229
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Figure 9.1: Real GDP per Capita

characterizing the level and change of economic development of not yet in-

dustrialized countries.

9.1.1 Kaldor’s Growth Facts

The British economist Nicholas Kaldor pointed out the following stylized

growth facts (empirical regularities of the growth process) for the US and for

most other industrialized countries.

1. Output (real GDP) per worker y =

Y
L

and capital per worker k =

K
L

grow over time at relatively constant and positive rate. See Figure

9.1.1.

2. They grow at similar rates, so that the ratio between capital and out-

put,

K
Y

is relatively constant over time

3. The real return to capital r (and the real interest rate r��) is relatively
constant over time.

4. The capital and labor shares are roughly constant over time. The capi-

tal share ↵ is the fraction of GDP that is devoted to interest payments

on capital, ↵ =

rK
Y
. The labor share 1� ↵ is the fraction of GDP that

is devoted to the payments to labor inputs; i.e. to wages and salaries

and other compensations: 1� ↵ =

wL
Y
. Here w is the real wage.

These stylized facts motivated the development of the neoclassical growth

model, the Solow growth model, to be discussed below. The Solow model

has spectacular success in explaining the stylized growth facts by Kaldor.

9.1.2 Development Facts from the Summers-Heston
Data Set

In addition to the growth facts we will be concerned with how income (per

worker) levels and growth rates vary across countries in di↵erent stages of

their development process. The true test of the Solow model is to what extent

it can explain di↵erences in income levels and growth rates across countries,
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Figure 9.2: Relative Incomes around the World

the so called development facts. As we will see in our discussion of Mankiw,

Romer and Weil (1992) the verdict is mixed.

Now we summarize the most important facts from the Summers and

Heston’s panel data set. This data set follows about 100 countries for 30

years and has data on income (production) levels and growth rates as well

as population and labor force data. In what follows we focus on the variable

income per worker. This is due to two considerations: a) our theory (the

Solow model) will make predictions about exactly this variable b) although

other variables are also important determinants for the standard of living

in a country, income per worker (or income per capita) may be the most

important variable (for the economist anyway) and other determinants of

well-being tend to be highly positively correlated with income per worker.

Before looking at the data we have to think about an important measure-

ment issue. Income is measured as GDP, and GDP of a particular country

is measured in the currency of that particular country. In order to com-

pare income between countries we have to convert these income measures

into a common unit. One option would be exchange rates. These, however,

tend to be rather volatile and reactive to events on world financial markets.

Economists which study growth and development tend to use PPP-based

exchange rates, where PPP stands for Purchasing Power Parity. All income

numbers used by Summers and Heston (and used in these notes) are con-

verted to $US via PPP-based exchange rates.

Here are the most important facts from the Summers and Heston data

set:

1. Enormous variation of per capita income across countries: the poorest

countries have about 5% of per capita GDP of US per capita GDP.

This fact makes a statement about dispersion in income levels. When

we look at Figure ??, we see that out of the 104 countries in the data

set, 37 in 1990 and 38 in 1960 had per worker incomes of less than 10%

of the US level.

The richest countries in 1990, in terms of per worker income, are Lux-

embourg, the US, Canada and Switzerland with over $30,000, the poor-

est countries, without exceptions, are in Africa. Mali, Uganda, Chad,

Central African Republic, Burundi, Burkina Faso all have income per
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Figure 9.3: Growth Rates around the World

worker of less than $1000. Not only are most countries extremely poor

compared to the US, but most of the world’s population is poor relative

to the US.

2. Enormous variation in growth rates of per worker income. This fact

makes a statement about changes of levels in per capita income. Figure

2 shows the distribution of average yearly growth rates from 1960 to

1990.

The majority of countries grew at average rates of between 1% and

3% (these are growth rates for real GDP per worker). Note that

some countries posted average growth rates in excess of 6% (Singapore,

Hong Kong, Japan, Taiwan, South Korea) whereas other countries ac-

tually shrunk, i.e. had negative growth rates (Venezuela, Nicaragua,

Guyana, Zambia, Benin, Ghana, Mauretania, Madagascar, Mozam-

bique, Malawi, Uganda, Mali). We will sometimes call the first group

growth miracles, the second group growth disasters. Note that not only

did the disasters’ relative position worsen, but that these countries ex-

perienced absolute declines in living standards. The US, in terms of its

growth experience in the last 30 years, was in the middle of the pack

with a growth rate of real per worker GDP of 1.4% between 1960 and

1990.

3. Growth rates determine economic fate of a country over longer periods

of time. How long does it take for a country to double its per capita

GDP if it grows at average rate of g% per year? A good rule of thumb:

70/g years (this rule of thumb is due to Nobel Price winner Robert E.

Lucas (1988)).

1
Growth rates are not constant over time for a given

country. This can easily be demonstrated for the US. GDP per worker

1Let yT denote GDP per capita in period T and y0 denote period 0 GDP per capita
in a particular country. Suppose the growth rate of GDP per capita is constant at g, i.e.
100 ⇤ g%. Then

yT = y0e
gT

Suppose we want to double GDP per capita in T years. Then

2 =
yT

y0
= e

gT
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Figure 9.4: Income per Capita in the Long Run

in 1990 was $36,810. If GDP would always have grown at 1.4%, then for

the US GDP per worker would have been about $9,000 in 1900, $2,300

in 1800, $570 in 1700, $140 in 1600, $35 in 1500 and so forth. Economic

historians (and common sense) tells us that nobody can survive on $35

per year (estimates are that about $300 are necessary as minimum

income level for survival). This indicates that the US (or any other

country) cannot have experienced sustained positive growth for the last

millennium or so. In fact, prior to the era of modern economic growth,

which started in England in the late 1800th century, per worker income

levels have been almost constant at subsistence levels. This can be seen

from Figure 3, which compiles data from various historical sources.

The start of modern economic growth is sometimes referred to as the

Industrial Revolution. It is the single most significant economic event

in history and has, like no other event, changed the economic circum-

stances in which we live. Hence modern economic growth is a quite

recent phenomenon, and so far has occurred only in Western Europe

and its o↵springs (US, Canada, Australia and New Zealand) as well as

recently in East Asia.

4. Countries change their relative position in the (international) income

distribution. Growth disasters fall, growth miracles rise, in the relative

cross-country income distribution. A classical example of a growth

disaster is Argentina. At the turn of the century Argentina had a per-

worker income that was comparable to that in the US. In 1990 the

per-worker income of Argentina was only on a level of one third of the

US, due to a healthy growth experience of the US and a disastrous

growth performance of Argentina. Countries that dramatically moved

up in the relative income distribution include Italy, Spain, Hong Kong,

or

ln(2) = gT

T

⇤ =
ln(2)

g

=
100 ⇤ ln(2)
g(in %)

Since 100 ⇤ ln(2) ⇡ 70, the rule of thumb follows.
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Japan, Taiwan and South Korea, countries that moved down are New

Zealand, Venezuela, Iran, Nicaragua, Peru and Trinidad&Tobago.

In the next section we have two tasks: to construct a model, the Solow

model, that a) can successfully explain the stylized growth facts b) investigate

to which extent the Solow model can explain the development facts.

9.2 The Solow Model and its Empirical Eval-
uation

The basic assumptions of the Solow model are that there is a single good

produced in our economy and that there is no international trade, i.e. the

economy is closed to international goods and factor flows. Also there is no

government. It is also assumed that all factors of production (labor, capital)

are fully employed in the production process. We assume that the labor

force, L(t) grows at constant rate n > 0, so that, by normalizing L(0) = 1

we have that

L(t) = entL(0) = ent

The model consists of two basic equations, the neoclassical aggregate pro-

duction function and a capital accumulation equation.

1. Neoclassical aggregate production function

Y (t) = F (K(t), A(t)L(t))

We assume that F has constant returns to scale, is strictly concave and

strictly increasing, twice continuously di↵erentiable, F (0, .) = F (., 0) =
0 and satisfies the Inada conditions. Here Y (t) is total output, K(t) is
the capital stock at time t and A(t) is the level of technology at time

t. We normalize A(0) = 1, so that a worker in period t provides the

same labor input as A(t) workers in period 0. We call A(t)L(t) labor

input in labor e�ciency units (rather than in raw number of bodies) or

e↵ective labor at date t. We assume that

A(t) = egt

i.e. the level of technology increases at continuous rate g > 0. We

interpret this as technological progress: due to the invention of new
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technologies or “ideas” workers get more productive over time. This

exogenous technological progress, which is not explained within the

model is the key driving force of economic growth in the Solow model.

One of the main criticisms of the Solow model is that it does not provide

an endogenous explanation for why technological progress, the driving

force of growth, arises. Romer (1990) and Jones (1995) pick up exactly

this point. We model technological progress as making labor more ef-

fective in the production process. This form of technological progress is

called labor augmenting or Harrod-neutral technological progress.

2
In

order to analyze the model we seek a representation in variables that

remain stationary over time, so that we can talk about steady states

and dynamics around the steady state. Obviously, since the number

of workers as well as technology grows exponentially, total output and

capital (even per capita or per worker) will tend to grow. However,

expressing all variables of the model in per e↵ective labor units there is

hope to arrive at a representation of the model in which the endogenous

variables are stationary. Hence we divide both sides of the production

function by the e↵ective labor input A(t)L(t) to obtain (using the con-

stant returns to scale assumption)

3

⇠(t) =
Y (t)

A(t)L(t)
=

F (K(t), A(t)L(t))

A(t)L(t)
= F

✓
K(t)

A(t)L(t)
, 1

◆
= f((t))

(9.1)

where ⇠(t) =

Y (t)
A(t)L(t) is output per e↵ective labor input and (t) =

K(t)
A(t)L(t) is the capital stock perfect labor input. From the assumptions

made on F it follows that f is strictly increasing, strictly concave, twice

continuously di↵erentiable, f(0) = 0 and satisfies the Inada condition.

Equation (9.1) summarizes our assumptions about the production tech-

nology of the economy.

2Alternative specifications of the production functions are F (AK,L) in which case
technological progress is called capital augmenting or Solow neutral technological progress,
and AF (K,L) in which case it is called Hicks neutral technological progress. For the
way we will define a balanced growth path below it is only Harrod-neutral technological
progress (at least for general production functions) that guarantees the existence of a
balanced growth path in the Solow model.

3In terms of notation I will use uppercase variables for aggregate variables, lowercase
for per-worker variables and the corresponding greek letter for variables per e↵ective labor
units. Since there is no greek y I use ⇠ for per capita output
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2. Capital accumulation equation and resource constraint

˙K(t) = sY (t)� �K(t) (9.2)

˙K(t) + �K(t) = Y (t)� C(t) (9.3)

The change of the capital stock in period t, ˙K(t) is given by gross

investment in period t, sY (t) minus the depreciation of the old capital

stock �K(t). We assume � � 0. Since we have a closed economy model

gross investment is equal to national saving (which is equal to saving

of the private sector, since there is no government). Here s is the

fraction of total output (income) in period t that is saved, i.e. not

consumed. The important assumption implicit in equation (9.2) is that
households save a constant fraction s of output (income), regardless of

the level of income. This is a strong assumption about the behavior
of households that is not endogenously derived from within a model

of utility-maximizing agents (and the Cass-Koopmans-Ramsey model

relaxes exactly this assumption). Remember that the discrete time

counterpart of this equation was

Kt+1 �Kt = sYt � �Kt

Kt+1 � (1� �)Kt = Yt � Ct

Now we can divide both sides of equation (9.2) by A(t)L(t) to obtain

˙K(t)

A(t)L(t)
= s⇠(t)� �(t) (9.4)

Expanding the left hand side of equation (9.4) gives

˙K(t)

A(t)L(t)
=

˙K(t)

K(t)

K(t)

A(t)L(t)
=

˙K(t)

K(t)
(t) (9.5)

But

̇(t)

(t)
=

˙K(t)

K(t)
�

˙L(t)

L(t)
�

˙A(t)

A(t)
=

˙K(t)

K(t)
� n� g

Hence

˙K(t)

K(t)
=

̇(t)

(t)
+ n+ g (9.6)
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Combining equations (9.5) and (9.6) with (9.4) yields

˙K(t)

A(t)L(t)
=

˙K(t)

K(t)
(t) =

✓
̇(t)

(t)
+ n+ g

◆
(t) (9.7)

̇(t) + (t)(n+ g) = s⇠(t)� �(t) (9.8)

̇(t) = s⇠(t)� (n+ g + �)(t) (9.9)

This is the capital accumulation equation in per-e↵ective worker terms. Com-

bining this equation with the production function gives the fundamental dif-

ferential equation of the Solow model

̇(t) = sf((t))� (n+ g + �)(t) (9.10)

Technically speaking this is a first order nonlinear ordinary di↵erential equa-

tion, and it completely characterizes the evolution of the economy for any

initial condition (0) = K(0). Once we have solved the di↵erential equation

for the capital per e↵ective labor path (t)t2[0,1) the rest of the endogenous

variables are simply given by

k(t) = (t)A(t) = egt(t)

K(t) = e(n+g)t(t)

y(t) = egtf((t))

Y (t) = e(n+g)tf((t))

C(t) = (1� s)e(n+g)tf((t))

c(t) = (1� s)egtf((t))

9.2.1 The Model and its Implications

Analyzing the qualitative properties of the model amounts to analyzing the

di↵erential equation (9.10). Unfortunately this di↵erential equation is non-

linear, so there is no general method to explicitly solve for the function (t).
We can, however, analyze the di↵erential equation graphically. Before doing

this, however, let us look at a (I think the only) particular example for which

we actually can solve the equation analytically

Example 108 Let f() = ↵ (i.e. F (K,AL) = K↵
(AL)1�↵). The funda-

mental di↵erential equation becomes

̇(t) = s(t)↵ � (n+ g + �)(t) (9.11)
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with (0) > 0 given. A steady state of this equation is given by (t) = ⇤

for which ̇(t) = 0 for all t. There are two steady states, the trivial one at
 = 0 (which we will ignore from now on, as it is only reached if (0) = 0)

and the unique positive steady state ⇤
=

⇣
s

n+g+�

⌘ 1
1�↵

. Now let’s solve the

di↵erential equation. This equation is, in fact, a special case of the so-called
Bernoulli equation. Let’s do the following substitution of variables. Define
v(t) = (t)1�↵. Then

v̇(t) = (1� ↵)(t)�↵ ⇤ ̇(t) = (1� ↵)̇(t)

(t)↵

Dividing both sides of (9.11) by (t)↵

1�↵
yields

(1� ↵)̇(t)

(t)↵
= (1� ↵)s� (1� ↵)(n+ g + �)(t)1�↵

and now making the substitution of variables

v̇(t) = (1� ↵)s� (1� ↵)(n+ g + �)v(t)

which is a linear ordinary first order (nonhomogeneous) di↵erential equa-
tion, which we know how to solve.4 The general solution to the homogeneous
equation takes the form

vg(t) = Ce�(1�↵)(n+g+�)t

where C is an arbitrary constant. A particular solution to the nonhomoge-
neous equation is

vp(t) =
s

n+ g + �
= v⇤ = (⇤

)

1�↵

Hence all solutions to the di↵erential equation take the form

v(t) = vg(t) + vp(t)

= v⇤ + Ce�(1�↵)(n+g+�)t

4An excellent reference for economists is Gandolfo, G. “Economic Dynamics: Methods
and Models”. There are thousands of math books on di↵erential equations, e.g. Boyce,
W. and DiPrima, R. “Elementary Di↵erential Equations and Boundary Value Problems”
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Now we use the initial condition v(0) = (0)1�↵ to determine the constant C

v(0) = v⇤ + C

C = v(0)� v⇤

Hence the solution to the initial value problem is

v(t) = v⇤ + (v(0)� v⇤) e�(1�↵)(n+g+�)t

and substituting back  for v we obtain

(t)1�↵
= (⇤

)

1�↵
+

�
(0)1�↵ � (⇤

)

1�↵� e�(1�↵)(n+g+�)t

and hence

(t) =


s

n+ g + �
+

✓
(0)1�↵ � s

n+ g + �

◆
e�(1�↵)(n+g+�)t

� 1
1�↵

Note that limt!1 (t) =
h

s
n+g+�

i 1
1�↵

= ⇤ regardless of the value of (0) > 0.

In other words the unique steady state capital per labor e�ciency unit is
locally (globally if one restricts attention to strictly positive capital stocks)
asymptotically stable

For a general production function one can’t solve the di↵erential equation

explicitly and has to resort to graphical analysis. In Figure ?? we plot the

two functions (n+ �+ g)(t) and sf((t)) against (t). Given the properties

of f it is clear that both curves intersect twice, once at the origin and once

at a unique positive ⇤
and (n + � + g)(t) < sf((t)) for all (t) < ⇤

and

(n+ � + g)(t) > sf((t)) for all (t) > ⇤. The steady state solves

sf(⇤
)

k⇤ = n+ � + g

Since the change in  is given by the di↵erence of the two curves, for (t) < ⇤

 increases, for (t) > ⇤
it decreases over time and for (t) = ⇤

it remains

constant. Hence, as for the example above, also in the general case there

exists a unique positive steady state level of the capital-labor-e�ciency ratio

that is locally asymptotically stable. Hence in the long run  settles down

at ⇤
for any initial condition (0) > 0.
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Figure 9.5: Capital in the Solow Model

Once the economy has settled down at ⇤, output, consumption and cap-

ital per worker grow at constant rates g and total output, capital and con-

sumption grow at constant rates g+ n. A situation in which the endogenous

variables of the model grow at constant (not necessarily the same) rates is

called a Balanced Growth Path (henceforth BGP). A steady state is a bal-

anced growth path with growth rate of 0.

9.2.2 Empirical Evaluation of the Model

Kaldor’s Growth Facts

Can the Solow model reproduce the stylized growth facts? The prediction of

the model is that in the long run output per worker and capital per worker

both grow at positive and constant rate g, the growth rate of technology.

Therefore the capital-labor ratio k is constant, as observed by Kaldor. The

other two stylized facts have to do with factor prices. Suppose that output

is produced by a single competitive firm that faces a rental rate of capital

r(t) and wage rate w(t) for one unit of raw labor (i.e. not labor in e�ciency

units). The firm rents both input at each instant in time and solves

max

K(t),L(t)�0
F (K(t), A(t)L(t))� r(t)K(t)� w(t)L(t)

Profit maximization requires

r(t) = FK(K(t), A(t)L(t))

w(t) = A(t)FL(K(t), A(t)L(t))

Given that F is homogenous of degree 1, FK and FL are homogeneous of

degree zero, i.e.

r(t) = FK

✓
K(t)

A(t)L(t)
, 1

◆

w(t) = A(t)FL

✓
K(t)

A(t)L(t)
, 1

◆

In a balanced grow path

K(t)
A(t)L(t) = (t) = ⇤

is constant, so the real rental

rate of capital is constant and hence the real interest rate is constant. The
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wage rate increases at the rate of technological progress, g. Finally we can

compute capital and labor shares. The capital share is given as

↵ =

r(t)K(t)

Y (t)

which is constant in a balanced growth path since the rental rate of capi-

tal is constant and Y (t) and K(t) grow at the same rate g + n. Hence the

unique balanced growth path of the Solow model, to which the economy con-

verges from any initial condition, reproduces all four stylized facts reported

by Kaldor. In this dimension the Solow model is a big success and Solow

won the Nobel price for it in 1989.

The Summers-Heston Development Facts

How can we explain the large di↵erence in per capita income levels across

countries? Assume first that all countries have access to the same production

technology, face the same population growth rate and have the same saving

rate. Then the Solow model predicts that all countries over time converge to

the same balanced growth path represented by ⇤. All countries’ per capita
income converges to the path y(t) = A(t)⇤

, equal for all countries under

the assumption of the same technology, i.e. same A(t) process. Hence, so

the prediction of the model, eventually per worker income (GDP) is equal-

ized internationally. The fact that we observe large di↵erences in per worker

incomes across countries in the data must then be due to di↵erent initial

conditions for the capital stock, so that countries di↵er with respect to their

relative distance to the common BGP. Poorer countries are just further away

from the BGP because they started with lesser capital stock, but will even-

tually catch up. This implies that poorer countries temporarily should grow

faster than richer countries, according to the model. To see this, note that

the growth rate of output per worker �y(t) is given by

�y(t) =

ẏ(t)

y(t)
= g +

f 0
((t))̇(t)

f((t))

= g +
f 0
((t))

f((t))
(sf((t))� (n+ � + g)(t))

Since

f 0((t))
f((t)) is positive and decreasing in (t) and (sf((t))� (n+ � + g)(t))

is decreasing in (t) for two countries with 1
(t) < 2

(t) < ⇤
we have
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Figure 9.6: Long Run Convergence of Income Levels

Figure 9.7: Long-Run Convergence of Income Levels

�1
y(t) > �2

y(t) > 0, i.e. countries that a further away from the balanced growth

path grow more rapidly. The hypothesis that all countries’ per worker income

eventually converges to the same balanced growth path, or the somewhat

weaker hypothesis that initially poorer countries grow faster than initially

richer countries is called absolute convergence. If one imposes the assump-

tions of equality of technology and savings rates across countries, then the

Solow model predicts absolute convergence. This implication of the model

has been tested empirically by several authors. The data one needs is a mea-

sure of “initially poor vs. rich” and data on growth rates from “initially”

until now. As measure of “initially poor vs. rich” the income per worker (in

$US) of di↵erent countries at some initial year has been used.

In Figure 9.2.2 we use data for a long time horizon for 16 now industri-

alized countries. Clearly the level of GDP per capita in 1885 is negatively

correlated with the growth rate of GDP per capita over the last 100 years

across countries. So this figure lends support to the convergence hypothesis.

We get the same qualitative picture when we use more recent data for 22

industrialized countries: the level of GDP per worker in 1960 is negatively

correlated with the growth rate between 1960 and 1990 across this group of

countries, as Figure 9.2.2 shows. This result, however, may be due to the way

we selected countries: the very fact that these countries are industrialized

countries means that they must have caught up with the leading country

(otherwise they wouldn’t be called industrialized countries now). This im-

portant point was raised by Bradford deLong (1988)

Let us take deLongs point seriously and look at the correlation between

initial income levels and subsequent growth rates for the whole cross-sectional

sample of Summers-Heston. Figure 9.2.2 doesn’t seem to support the con-

vergence hypothesis: for the whole sample initial levels of GDP per worker

are pretty much uncorrelated with consequent growth rates. In particular, it

doesn’t seem to be the case that most of the very poor countries, in partic-

ular in Africa, are catching up with the rest of the world, at least not until

1990 (or until 2002 for that matter).

So does Figure 9.2.2 constitute the big failure of the Solow model? After
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Figure 9.8: Failure of Long Run Convergence of Income Levels

all, for the big sample of countries it didn’t seem to be the case that poor

countries grow faster than rich countries. But isn’t that what the Solow

model predicts? Not exactly: the Solow model predicts that countries that

are further away from their balanced growth path grow faster than countries

that are closer to their balanced growth path (always assuming that the rate

of technological progress is the same across countries). This hypothesis is

called conditional convergence. The “conditional” means that we have to

condition on characteristics of countries that may make them have di↵erent

steady states ⇤
(s, n, �) (they still should grow at the same rate eventually,

after having converged to their steady states) to determine which countries

should grow faster than others. So the fact that poor African countries

grow slowly even though they are poor may be, according to the conditional

convergence hypothesis, due to the fact that they have a low balanced growth

path and are already close to it, whereas some richer countries grow fast since

they have a high balanced growth path and are still far from reaching it.

To test the conditional convergence hypothesis economists basically do

the following: they compute the steady state output per worker

5
that a

country should possess in a given initial period, say 1960, given n, s, � mea-

sured in this country’s data. Then they measure the actual GDP per worker

in this period and build the di↵erence. This di↵erence indicates how far away

this particular country is away from its balanced growth path. This variable,

the di↵erence between hypothetical steady state and actual GDP per worker

is then plotted against the growth rate of GDP per worker from the initial

period to the current period. If the hypothesis of conditional convergence

were true, these two variables should be negatively correlated across coun-

tries: countries that are further away from their from their balanced growth

path should grow faster. Jones’ (1998) Figure 3.8 provides such a plot. In

contrast to Figure 9.2.2 he finds that, once one conditions on country-specific

steady states, poor (relative to their steady) tend to grow faster than rich

countries. So again, the Solow model is quite successful qualitatively.

Now we want to go one step further and ask whether the Solow model

can predict the magnitude of cross-country income di↵erences once we allow

5Which is proportional to the balanced growth path for output per worker (just multiply
it by the constant A(1960)).
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parameters that determine the steady state to vary across countries. Such

a quantitative exercise was carried out in the influential paper by Mankiw,

Romer and Weil (1992). The authors “want to take Robert Solow seriously”,

i.e. investigate whether the quantitative predictions of his model are in line

with the data. More specifically they ask whether the model can explain the

enormous cross-country variation of income per worker. For example in 1985

per worker income of the US was 31 times as high as in Ethiopia.

There is an obvious way in which the Solow model can account for this

number. Suppose we constrain ourselves to balanced growth paths (i.e. ig-

nore the convergence discussion that relies on the assumptions that countries

have not yet reached their BGP’s). Then, by denoting yUS
(t) as per worker

income in the US and yETH
(t) as per worker income in Ethiopia in time t we

find that along BGP’s, with assumed Cobb-Douglas production function

yUS
(t)

yETH
(t)

=

AUS
(t)

AETH
(t)

⇤
⇣

sUS

nUS+gUS+�US

⌘ ↵
1�↵

⇣
sETH

nETH+gETH+�ETH

⌘ ↵
1�↵

(9.12)

One easy way to get the income di↵erential is to assume large enough dif-

ferences in levels of technology

AUS(t)
AETH(t) . One fraction of the literature has

gone this route; the hard part is to justify the large di↵erences in levels of

technology when technology transfer is relatively easy between a lot of coun-

tries.

6
The other fraction, instead of attributing the large income di↵erences

to di↵erences in A attributes the di↵erence to variation in savings (invest-

ment) and population growth rates. Mankiw et al. take this view. They

assume that there is in fact no di↵erence across countries in the production

technologies used, so that AUS
(t) = AETH

(t) = A(0)egt, gETH
= gUS

and

�ETH
= �US. Assuming balanced growth paths and Cobb-Douglas production

we can write

yi(t) = A(0)egt
✓

si

ni
+ � + g

◆ ↵
1�↵

where i indexes a country. Taking natural logs on both sides we get

ln(yi(t)) = ln(A(0)) + gt+
↵

1� ↵
ln(si)� ↵

1� ↵
ln(ni

+ � + g)

Given this linear relationship derived from the theoretical model it very

tempting to run this as a regression on cross-country data. For this, how-

6See, e.g. Parente and Prescott (1994, 1999).
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ever, we need a stochastic error term which is nowhere to be detected in the

model. Mankiw et al. use the following assumption

ln(A(0)) = a+ "i (9.13)

where a is a constant (common across countries) and "i is a country specific

random shock to the (initial) level of technology that may, according to the

authors, represent not only variations in production technologies used, but

also climate, institutions, endowments with natural resources and the like.

Using this and assuming that the time period for the cross sectional data on

which the regression is run is t = 0 (if t = T that only changes the constant

7
)

we obtain the following linear regression

ln(yi) = a+
↵

1� ↵
ln(si)� ↵

1� ↵
ln(ni

+ � + g) + "i

ln(yi) = a+ b1 ln(s
i
) + b2 ln(n

i
+ � + g) + "i (9.14)

Note that the variation in "i across countries, according to the underlying

model, are attributed to variations in technology. Hence the regression results

will tell us how much of the variation in cross-country per-worker income is

due to variations in investment and population growth rates, and how much

is due to random di↵erences in the level of technology. This is, if we take

(9.13) literally, how the regression results have to be interpreted. If we want

to estimate (9.14) by OLS, the identifying assumption is that the "i are

uncorrelated with the other variables on the right hand side, in particular

the investment and population growth rate. Given the interpretation the

authors o↵ered for "i I invite you all to contemplate whether this is a good

assumption or not. Note that the regression equation also implies restrictions

on the parameters to be estimated: if the specification is correct, then one

expects the estimated

ˆb1 = �ˆb2. One may also impose this constraint a priori

on the parameter values and do constrained OLS. Apparently the results

don’t change much from the unrestricted estimation. Also, given that the

production function is Cobb-Douglas, ↵ has the interpretation as capital

share, which is observable in the data and is thought to be around .25-0.5 for

most countries, one would expect

ˆb1 2 [

1
3 , 1] a priori. This is an important

test for whether the specification of the regression is correct.

7Note that we do not use the time series dimension of the data, only the cross-sectional,
i.e. cross-country dimension.
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With respect to data, yi is taken to be real GDP divided by working

age population in 1985, ni
is the average growth rate of the working-age

population

8
from 1960 � 85 and s is the average share of real investment

9

from real GDP between 1960� 85. Finally they assume that g+ � = 0.05 for

all countries.

Table 2 reports their results for the unrestricted OLS-estimated regression

on a sample of 98 countries (see their data appendix for the countries in the

sample)

Table 2

â ˆb1 ˆb2 ¯R2

5.48
(1.59)

1.42
(0.14)

�1.48
(0.12)

0.59

The basic results supporting the Solow model are that the

ˆbi have the

right sign, are highly statistically significant and are of similar size. Most

importantly, a major fraction of the cross-country variation in per-worker

incomes, namely about 60% is accounted for by the variations in the ex-

planatory variables, namely investment rates and population growth rates.

The rest, given the assumptions about where the stochastic error term comes

from, is attributed to random variations in the level of technology employed

in particular countries.

That seems like a fairly big success of the Solow model. However, the

size of the estimates

ˆbi indicates that the implied required capital shares on

average have to lie around

2
3 rather than

1
3 usually observed in the data. This

is both problematic for the success of the model and points to a direction of

improvement of the model.

Let’s first understand where the high coe�cients come from. Assume

that nUS
= nETH

= n (variation in population growth rates is too small to

make a significant di↵erence) and rewrite (9.12) as (using the assumption of

same technology, the di↵erences are assumed to be of stochastic nature)

yUS
(t)

yETH
(t)

=

✓
sUS

sETH

◆ ↵
1�↵

8This implicitly assumes a constant labor force participation rate from 1960� 85.
9Private as well as government (gross) investment.
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To generate a spread of incomes of 31, for ↵ =

1
3 one needs a ratio of in-

vestment rates of 961 which is obviously absurdly high. But for ↵ =

2
3 one

only requires a ratio of 5.5. In the data, the measured ratio is about 3.9 for

the US versus Ethiopia. This comes pretty close (population growth di↵er-

entials would almost do the rest). Obviously this is a back of the envelope

calculation involving only two countries, but it demonstrates the core of the

problem: there is substantial variation in investment and population growth

rates across countries, but if the importance of capital in the production

process is as low as the commonly believed ↵ =

1
3 , then these variations are

nowhere nearly high enough to generate the large income di↵erentials that

we observe in the data. Hence the regression forces the estimated ↵ up to

two thirds to make the variations in si (and ni
) matter su�ciently much.

So if we can’t change the data to give us a higher capital share and

can’t force the model to deliver the cross-country spread in incomes given

reasonable capital shares, how can we rescue the model? Mankiw, Romer

and Weil do a combination of both. Suppose you reinterpret the capital stock

as broadly containing not only the physical capital stock, but also the stock

of human capital and you interpret part of labor income as return to not

just raw physical labor, but as returns to human capital such as education,

then possibly a capital share of two thirds is reasonable. In order to do

this reinterpretation on the data, one better first augments the model to

incorporate human capital as well.

So now let the aggregate production function be given by

Y (t) = K(t)↵H(t)� (A(t)L(t))1�↵��

where H(t) is the stock of human capital. We assume ↵ + � < 1, since if

↵ + � = 1, there are constant returns to scale in accumulable factors alone,

which prevents the existence of a balanced growth path (the model basically

becomes an AK-model to be discussed below. We will specify below how

to measure human capital (or better: investment into human capital) in the

data. The capital accumulation equations are now given by

˙K(t) = skY (t)� �K(t)
˙H(t) = shY (t)� �H(t)

Expressing all equations in per-e↵ective labor units yields (where ⌘(t) =
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H(t)
A(t)L(t)

⇠(t) = (t)a⌘(t)�

̇(t) = sk⇠(t)� (n+ � + g)(t)

⌘̇(t) = sh⇠(t)� (n+ � + g)⌘(t)

Obviously a unique positive steady state exists which can be computed as

before

⇤
=

 
s1��
k s�h

n+ � + g

! 1
1�↵��

⌘⇤ =

✓
s↵ks

1�↵
h

n+ � + g

◆ 1
1�↵��

⇠⇤ = (⇤
)

↵
(⌘⇤)�

and the associated balanced growth path has

y(t) = A(0)egt⇠⇤

= A(0)egt
 

s1��
k s�h

n+ � + g

! ↵
1�↵�� ✓

s↵ks
1�↵
h

n+ � + g

◆ �
1�↵��

Taking logs yields

ln(y(t)) = ln(A(0)) + gt+ b1 ln(sk) + b2 ln(sh) + b3 ln(n+ � + g)

where b1 =

↵
1�↵��

, b2 =

�
1�↵��

and b3 = � ↵+�
1�↵��

. Making the same as-

sumptions about how to bring a stochastic component into the completely

deterministic model yields the regression equation

ln(yi) = a+ b1 ln(s
i
k) + b2 ln(s

i
h) + b3 ln(n

i
+ � + g) + "i

The main problem in estimating this regression (apart from the validity of

the orthogonality assumption of errors and instruments) is to construct rea-

sonable data for the savings rate of human capital. Ideally we would measure

all the resources flowing into investment that increases the stock of human

capital, including investment into education, health and so forth. For now

let’s limit attention to investment into education. Mankiw et al.’s measure
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of the investment rate of education is the fraction of the total working age

population that goes to secondary school, as found in data collected by the

UNESCO, i.e.

sh =

S

L

where S is the number of people in the labor force that go to school (and

forgo wages as unskilled workers) and L is the total labor force. Why may

this be a good proxy for the investment share of output into education?

Investment expenditures for education include new buildings of the univer-

sities, salaries of teachers, and most significantly, the forgone wages of the

students in school. Let’s assume that forgone wages are the only input for

human capital investment (if the other inputs are proportional to this mea-

sure, the argument goes through unchanged). Let the people in school forgo

wages wL as unskilled workers. Total forgone earnings are then wLS and the

investment share of output into human capital is

wLS
Y

. But the wage of an

unskilled worker is given (under perfect competition) by its marginal product

wL = (1� ↵� �)K(t)↵H(t)�A(t)1�↵��L(t)�↵��

so that

wLS

Y
=

wLLS

Y L
= (1� ↵� �)

S

L
= (1� ↵� �)sh

so that the measure that the authors employ is proportional to a “theoret-

ically more ideal” measure of the human capital savings rate. Noting that

ln((1 � ↵ � �)sh) = ln(1 � ↵ � �) + ln(sh) one immediately see that the

proportionality factor will only a↵ect the estimate of the constant, but not

the estimates of the bi.
The results of estimating the augmented regression by OLS are given in

Table 3

Table 3

â ˆb1 ˆb2 ˆb3 ¯R2

6.89
(1.17)

0.69
(0.13)

0.66
(0.07)

�1.73
(0.41)

0.78

The results are quite remarkable. First of all, almost 80% of the variation

of cross-country income di↵erences is explained by di↵erences in savings rates

in physical and human capital This is a huge number for cross-sectional
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regressions. Second, all parameter estimates are highly significant and have

the right sign. In addition we (i.e. Mankiw, Romer and Weil) seem to have

found a remedy for the excessively high implied estimates for ↵. Now the

estimates for bi imply almost precisely ↵ = � =

1
3 and the one overidentifying

restriction on the b0is can’t be rejected at standard confidence levels (although

ˆb3 is a bit high). The final verdict is that with respect to explaining cross-

country income di↵erences an augmented version of the Solow model does

remarkably well. This is, as usual subject to the standard quarrels that

there may be big problems with data quality and that their method is not

applicable for non-Cobb-Douglas technology. On a more fundamental level

the Solow model has methodological problems and Mankiw et al.’s analysis

leaves several questions wide open:

1. The assumption of a constant saving rate is a strong behavioral as-

sumption that is not derived from any underlying utility maximization

problem of rational agents. Our next topic, the discussion of the Cass-

Koopmans-Ramsey model will remedy exactly this shortcoming

2. The driving force of economic growth, technological progress, is model-

exogenous; it is assumed, rather than endogenously derived. We will

pick this up in our discussion of endogenous growth models.

3. The cross-country variation of per-worker income is attributed to vari-

ations in investment rates, which are taken to be exogenous. What

is then needed is a theory of why investment rates di↵er across coun-

tries. I can provide you with interesting references that deal with this

problem, but we will not talk about this in detail in class.

But now let’s turn to the first of these points, the introduction of endoge-

nous determination of household’s saving rates.

9.3 The Ramsey-Cass-Koopmans Model

In this section we discuss the first logical extension of the Solow model.

Instead of assuming that households save at a fixed, exogenously given rate s
we will analyze a model in which agents actually make economic decisions; in

particular they make the decision how much of their income to consume in the

current period and how much to save for later. This model was first analyzed
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by the British mathematician and economist Frank Ramsey. He died in 1930

at age 29 from tuberculosis, not before he wrote two of the most influential

economics papers ever to be written. We will discuss a second pathbreaking

idea of his in our section on optimal fiscal policy. Ramsey’s ideas were taken

up independently by David Cass and Tjelling Koopmans in 1965 and have

now become the second major workhorse model in modern macroeconomics,

besides the OLG model discussed previously. In fact, in Section 3 of these

notes we discussed the discrete-time version of this model and named it the

neoclassical growth model. Now we will in fact incorporate economic growth

into the model, which is somewhat more elegant to do in continuous time,

although there is nothing conceptually di�cult about introducing growth

into the discrete-time version- a useful exercise.

9.3.1 Mathematical Preliminaries: Pontryagin’s Max-
imum Principle

Intriligator, Chapter 14

9.3.2 Setup of the Model

Our basic assumptions made in the previous section are carried over. There is

a representative, infinitely lived family (dynasty) in our economy that grows

at population growth rate n > 0 over time, so that, by normalizing the size of

the population at time 0 to 1 we have that L(t) = ent is the size of the family

(or population) at date t. We will treat this dynasty as a single economic

agent. There is no risk in this economy and all agents are assumed to have

perfect foresight.

Production takes place with a constant returns to scale production func-

tion

Y (t) = F (K(t), A(t)L(t))

where the level of technology grows at constant rate g > 0, so that, nor-

malizing A(0) = 1 we find that the level of technology at date t is given by

A(t) = egt. The aggregate capital stock evolves according to

˙K(t) = F (K(t), A(t)L(t))� �K(t)� C(t) (9.15)

i.e. the net change in the capital stock is given by that fraction of output that

is not consumed by households, C(t) or by depreciation �K(t). Alternatively,



252 CHAPTER 9. CONTINUOUS TIME GROWTH THEORY

this equation can be written as

˙K(t) + �K(t) = F (K(t), A(t)L(t))� C(t)

which simply says that aggregate gross investment

˙K(t) + �K(t) equals ag-
gregate saving F (K(t), A(t)L(t))�C(t) (note that the economy is closed and

there is no government). As before this equation can be expressed in labor-

intensive form: define c(t) = C(t)
L(t) as consumption per capita (or worker) and

⇣(t) = C(t)
A(t)L(t) as consumption per labor e�ciency unit (the Greek symbol is

called a “zeta”). Then we can rewrite (9.15) as, using the same manipulations

as before

̇(t) = f((t))� ⇣(t)� (n+ � + g)(t) (9.16)

Again f is assumed to have all the properties as in the previous section. We

assume that the initial endowment of capital is given by K(0) = (0) = 0 >
0

So far we just discussed the technology side of the economy. Now we want

to describe the preferences of the representative family. We assume that the

family values streams of per-capita consumption c(t)t2[0,1) by

u(c) =

Z 1

0

e�⇢tU(c(t))dt

where ⇢ > 0 is a time discount factor. Note that this implicitly discounts

utility of agents that are born at later periods. Ramsey found this to be

unethical and hence assumed ⇢ = 0. Here U(c) is the instantaneous utility or

felicity function.

10
In most of our discussion we will assume that the period

utility function is of constant relative risk aversion (CRRA) form, i.e.

U(c) =

⇢
c1��

1��
if � 6= 1

ln(c) if � = 1

10An alternative, so-called Benthamite (after British philosopher Jeremy Bentham) fe-
licity function would read as L(t)U(c(t)). Since L(t) = e

nt we immediately see

e

�⇢t
L(t)U(c(t))

= e

�(⇢�n)t
U(c(t))

and hence we would have the same problem with adjusted time discount factor, and we
would need to make the additional assumption that ⇢ > n.
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Under our assumption of CRRA

11
we can rewrite

e�⇢tU(c(t)) = e�⇢t c(t)
1��

1� �

= e�⇢t (⇣(t)e
gt
)

1��

1� �

= e�(⇢�g(1��))t ⇣(t)
1��

1� �

and we assume ⇢ > g(1 � �). Define ⇢̂ = ⇢ � g(1 � �). We therefore can

rewrite the utility function of the dynasty as

u(⇣) =

Z 1

0

e�⇢̂t ⇣(t)
1��

1� �
dt (9.17)

=

Z 1

0

e�⇢̂tU(⇣(t))dt (9.18)

where � = 1 is understood to be the log-case. As before note that, once we

know the variables (t) and ⇣(t) we can immediately determine per capita

consumption c(t) = ⇣(t)egt and the per capita capital stock k(t) = (t)egt

and output y(t) = egtf((t)). Aggregate consumption, output and capital

stock can be deduced similarly.

This completes the description of the environment. We will now, in turn,

describe Pareto optimal and competitive equilibrium allocations and argue

(heuristically) that they coincide.

9.3.3 Social Planners Problem

The first question is how a social planner would allocate consumption and

saving over time. Note that in this economy there is a single agent, so

the problem of the social planner is reduced from the OLG model to only

intertemporal (and not also intergenerational) allocation of consumption. An

allocation is a pair of functions (t) : [0,1) ! R and ⇣(t) : [0,1) ! R.

11Some of the subsequent analysis could be carried out with more general assumptions
on the period utility functions. However for the existence of a balanced growth path one
has to assume CRRA, so I don’t see much of a point in higher degree of generality that
in some point of the argument has to be dispensed with anyway.

For an extensive discussion of the properties of the CRRA utility function see the ap-
pendix to Chapter 2 and HW1.
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Definition 109 An allocation (, ⇣) is feasible if it satisfies (0) = 0,
(t), ⇣(t) � 0 and (9.16) for all t 2 [0,1).

Definition 110 An allocation (⇤, ⇣⇤) is Pareto optimal if it is feasible and
if there is no other feasible allocation (̂, ˆ⇣) such that u(ˆ⇣) > u(⇣⇤).

It is obvious that (⇤, ⇣⇤) is Pareto optimal, if and only if it solves the

social planner problem

max

(,⇣)�0

Z 1

0

e�⇢̂tU(⇣(t))dt (9.19)

s.t. ̇(t) = f((t))� ⇣(t)� (n+ � + g)(t)

(0) = 0

This problem can be solved using Pontryagin’s maximum principle. The

state variable in this problem is (t) and the control variable is ⇣(t). Let by
�(t) denote the co-state variable corresponding to (t). Forming the present

value Hamiltonian and ignoring nonnegativity constraints

12
yields

H(t,, ⇣,�) = e�⇢̂tU(⇣(t)) + �(t) [f((t))� ⇣(t)� (n+ � + g)(t)]

Su�cient conditions for an optimal solution to the planners problem (9.19)
are

13

@H(t,, ⇣,�)

@⇣(t)
= 0

˙�(t) = �@H(t,, ⇣,�)

@(t)

lim

t!1
�(t)(t) = 0

The last condition is the so-called transversality condition (TVC). This yields

e�⇢̂tU 0
(⇣(t)) = �(t) (9.20)

˙�(t) = � (f 0
((t))� (n+ � + g))�(t) (9.21)

lim

t!1
�(t)(t) = 0 (9.22)

12Given the functional form assumptions this is unproblematic.
13I use present value Hamiltonians. You should do the same derivation using current

value Hamiltonians, as, e.g. in Intriligator, Chapter 16.
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plus the constraint

̇(t) = f((t))� ⇣(t)� (n+ � + g)(t) (9.23)

Now we eliminate the co-state variable from this system. Di↵erentiating

(9.20) with respect to time yields

˙�(t) = e�⇢̂tU
00
(⇣(t)) ˙⇣(t)� ⇢̂e�⇢̂tU 0

(⇣(t))

or, using (9.20)
˙�(t)

�(t)
=

˙⇣(t)U
00
(⇣(t))

U 0
(⇣(t))

� ⇢̂ (9.24)

Combining (9.24) with (9.21) yields

˙⇣(t)U
00
(⇣(t))

U 0
(⇣(t))

= � (f 0
((t))� (n+ � + g + ⇢̂)) (9.25)

or multiplying both sides by ⇣(t) yields

˙⇣(t)
⇣(t)U

00
(⇣(t))

U 0
(⇣(t))

= � (f 0
((t))� (n+ � + g + ⇢̂)) ⇣(t)

Using our functional form assumption on the utility function U(⇣) = ⇣1��

1��
we

obtain for the coe�cient of relative risk aversion � ⇣(t)U
00
(⇣(t))

U 0(⇣(t)) = � and hence

˙⇣(t) =
1

�
(f 0

((t))� (n+ � + g + ⇢̂)) ⇣(t)

Note that for the isoelastic case (� = 1) we have that ⇢̂ = ⇢ and hence the

equation becomes

˙⇣(t) = (f 0
((t))� (n+ � + g + ⇢)) ⇣(t)

The transversality condition can be written as

lim

t!1
�(t)(t) = lim

t!1
e�⇢̂tU 0

(⇣(t))(t) = 0

Hence any allocation (, ⇣) that satisfies the system of nonlinear ordinary

di↵erential equations

˙⇣(t) =

1

�
(f 0

((t))� (n+ � + g + ⇢̂)) ⇣(t) (9.26)

̇(t) = f((t))� ⇣(t)� (n+ � + g)(t) (9.27)
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with the initial condition (0) = 0 and terminal condition (TVC)

lim

t!1
e�⇢̂tU 0

(⇣(t))(t) = 0

is a Pareto optimal allocation. We now want to analyze the dynamic system

(9.26)� (9.27) in more detail.

Steady State Analysis

Before analyzing the full dynamics of the system we look at the steady state

of the optimal allocation. A steady state satisfies

˙⇣(t) = ̇(t) = 0. Hence from
equation (9.26) we have14, denoting steady state capital and consumption per

e�ciency units by ⇣⇤ and ⇤

f 0
(⇤

) = (n+ � + g + ⇢̂) (9.28)

The unique capital stock ⇤
satisfying this equation is called the modified

golden rule capital stock.

The “modified” comes from the following consideration. Suppose there is

no technological progress, then the modified golden rule capital stock ⇤
= k⇤

satisfies

f 0
(k⇤

) = (n+ � + ⇢) (9.29)

The golden rule capital stock is that capital stock per worker kg
that max-

imizes per-capita consumption. The steady state capital accumulation con-

dition (without technological progress) is (see (9.27))

c = f(k)� (n+ �)k

Hence the original golden rule capital stock satisfies

15

f 0
(kg

) = n+ �

and hence k⇤ < kg. The social planner optimally chooses a capital stock per

worker k⇤
below the one that would maximize consumption per capita. So

14There is the trivial steady state 

⇤ = ⇣

⇤ = 0. We will ignore this steady state from
now on, as it only is optimal when (0) = 0.

15Note that the golden rule capital stock had special significance in OLG economies.
In particular, any steady state equilibrium with capital stock above the golden rule was
shown to be dynamically ine�cient.
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even though the planner could increase every person’s steady state consump-

tion by increasing the capital stock, taking into account the impatience of

individuals the planner finds it optimal not to do so.

Equation (9.28) or (9.29) indicate that the exogenous parameters govern-

ing individual time preference, population and technology growth determine

the interest rate and the marginal product of capital. The production tech-

nology then determines the unique steady state capital stock and the unique

steady state consumption from (9.27) as

⇣⇤ = f(⇤
)� (n+ � + g)⇤

The Phase Diagram

It is in general impossible to solve the two-dimensional system of di↵erential

equations analytically, even for the simple example for which we obtain an

analytical solution in the Solow model. A powerful tool when analyzing

the dynamics of continuous time economies turn out to be so-called phase

diagrams. Again, the dynamic system to be analyzed is

˙⇣(t) =

1

�
(f 0

((t))� (n+ � + g + ⇢̂)) ⇣(t)

̇(t) = f((t))� ⇣(t)� (n+ � + g)(t)

with initial condition (0) = 0 and terminal transversality condition limt!1 e�⇢̂tU 0
(⇣(t))(t) =

0. We will analyze the dynamics of this system in (, ⇣) space. For any given

value of the pair (, ⇣) � 0 the dynamic system above indicates the change

of the variables (t) and ⇣(t) over time. Let us start with the first equation.

The locus of values for (, ⇣) for which ˙⇣(t) = 0 is called an isocline; it is

the collection of all points (, ⇣) for which

˙⇣(t) = 0. Apart from the trivial

steady state we have

˙⇣(t) = 0 if and only if (t) satisfies f 0
((t))� (n+ � +

g + ⇢̂) = 0, or (t) = ⇤. Hence in the (, ⇣) plane the isocline is a vertical

line at (t) = ⇤. Whenever (t) > ⇤
(and ⇣(t) > 0), then

˙⇣(t) < 0, i.e. ⇣(t)
declines. We indicate this in Figure 9.3.3 with vertical arrows downwards at

all points (, ⇣) for which  < ⇤. Reversely, whenever  < ⇤
we have that

˙⇣(t) > 0, i.e. ⇣(t) increases. We indicate this with vertical arrows upwards

at all points (, ⇣) at which  < ⇤. Similarly we determine the isocline

corresponding to the equation ̇(t) = f((t))� ⇣(t)� (n+ �+ g)(t). Setting
̇(t) = 0 we obtain all points in (, ⇣)-plane for which ̇(t) = 0, or ⇣(t) =

f((t)) � (n + � + g)(t). Obviously for (t) = 0 we have ⇣(t) = 0. The
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Figure 9.9: The Dynamics of the Neoclassical Growth Model

Figure 9.10: The Dynamics of the Neoclassical Growth Model

curve is strictly concave in (t) (as f is strictly concave), has its maximum

at g > ⇤
solving f 0

(g
) = (n + � + g) and again intersects the horizontal

axis for (t) > g
solving f((t)) = (n + � + g)(t). Hence the isocline

corresponding to ̇(t) = 0 is hump-shaped with peak at g.

For all (, ⇣) combinations above the isocline we have ⇣(t) > f((t))�(n+
� + g)(t), hence ̇(t) < 0 and hence (t) is decreasing. This is indicated by

horizontal arrows pointing to the left in Figure 9.3.3. Correspondingly, for all

(, ⇣) combinations below the isocline we have ⇣(t) < f((t))�(n+�+g)(t)
and hence ̇(t) > 0; i.e. (t) is increasing, which is indicated by arrows

pointing to the right.

Note that we have one initial condition for the dynamic system, (0) = 0.
The arrows indicate the direction of the dynamics, starting from (0). How-
ever, one initial condition is generally not enough to pin down the behav-

ior of the dynamic system over time, i.e. there may be several time paths

of ((t), ⇣(t)) that are an optimal solution to the social planners problem.

The question is, basically, how the social planner should choose ⇣(0). Once

this choice is made the dynamic system as described by the phase diagram

uniquely determines the optimal path of capital and consumption. Possible

such paths are traced out in Figure 9.3.3.

We now want to argue two things: a) for a given (0) > 0 any choice ⇣(0)
of the planner leading to a path not converging to the steady state (⇤, ⇣⇤)
cannot be an optimal solution and b) there is a unique stable path leading

to the steady state. The second property is called-saddle-path stability of

the steady state and the unique stable path is often called a saddle path (or

a one-dimensional stable manifold).

Let us start with the first point. There are three possibilities for any path

starting with arbitrary (0) > 0; they either go to the unique steady state,

they lead to the point E (as trajectories starting from points A or C), or they
go to points with  = 0 such as trajectories starting at B or D. Obviously

trajectories like A and C that don’t converge to E violate the nonnegativity

of consumption ⇣(t) = 0 in finite amount of time. But a trajectory converging
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asymptotically to E violates the transversality condition

lim

t!1
e�⇢̂tU 0

(⇣(t))(t) = 0

As the trajectory converges to E, (t) converges to a ̄ > g > ⇤ > 0 and

from (9.25) we have, since

dU 0(⇣(t))
dt

=

˙⇣(t)U
00
(⇣(t))

dU 0(⇣(t))
dt

U 0
(⇣(t))

= �f 0
((t)) + (n+ � + g + ⇢̂) > ⇢̂ > 0

i.e. the growth rate of marginal utility of consumption is bigger than ⇢̂ as

the trajectory approaches A. Given that  approaches ̄ it is clear that the

transversality condition is violated for all those trajectories.

Now consider trajectories like B or D. If, in finite amount of time, the

trajectory hits the ⇣-axis, then (t) = ⇣(t) = 0 from that time onwards,

which, given the Inada conditions imposed on the utility function can’t be

optimal. It may, however, be possible that these trajectories asymptotically

go to (, ⇣) = (0,1). That this can’t happen can be shown as follows. From

(9.27) we have

̇(t) = f((t))� ⇣(t)� (n+ � + g)(t)

which is negative for all (t) < ⇤. Di↵erentiating both sides with respect to

time yields

d̇(t)

dt
=

d2(t)

dt2
= (f 0

((t))� (n+ � + g)) ̇(t)� ˙⇣(t) < 0

since along a possible asymptotic path

˙⇣(t) > 0. So not only does (t) decline,
but it declines at increasing pace. Asymptotic convergence to the ⇣-axis,
however, would require (t) to decline at a decreasing pace. Hence all paths

like B or D have to reach (t) = 0 at finite time and therefore can’t be

optimal. These arguments show that only trajectories that lead to the unique

positive steady state (⇤, ⇣⇤) can be optimal solutions to the planner problem

In order to prove the second claim that there is a unique such path for

each possible initial condition (0) we have to analyze the dynamics around

the steady state.
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Dynamics around the Steady State

We can’t solve the system of di↵erential equations explicitly even for simple

examples. But from the theory of linear approximations we know that in

a neighborhood of the steady state the dynamic behavior of the nonlinear

system is characterized by the behavior of the linearized system around the

steady state. Remember that the first order Taylor expansion of a function

f : Rn ! R around a point x⇤ 2 Rn
is given by

f(x) = f(x⇤
) +rf(x⇤

) · (x� x⇤
)

where rf(x⇤
) 2 Rn

is the gradient (vector of partial derivatives) of f at x⇤.
In our case we have x⇤

= (⇤, ⇣⇤), and two functions f, g defined as

˙⇣(t) = f((t), ⇣(t)) =
1

�
(f 0

((t))� (n+ � + g + ⇢̂)) ⇣(t)

̇(t) = g((t), ⇣(t)) = f((t))� ⇣(t)� (n+ � + g)(t)

Obviously we have f(⇤, ⇣⇤) = g(⇤, ⇣⇤) = 0 since (⇤, ⇣⇤) is a steady state.

Hence the linear approximation around the steady state takes the form

✓
˙⇣(t)
̇(t)

◆
⇡

✓
1
�
(f 0

((t))� (n+ � + g + ⇢̂)) 1
�
f 00

((t))⇣(t)
�1 f 0

((t))� (n+ � + g)

◆����
(⇣(t),(t))=(⇣⇤,⇤)

·
✓

⇣(t)� ⇣⇤

(t)� ⇤

◆

=

✓
0

1
�
f 00

(⇤
)⇣⇤

�1 ⇢̂

◆
·
✓

⇣(t)� ⇣⇤

(t)� ⇤

◆
(9.30)

This two-dimensional linear di↵erence equation can now be solved ana-

lytically. It is easiest to obtain the qualitative properties of this system by

reducing it two a single second order di↵erential equation. Di↵erentiate the

second equation with respect to time to obtain

̈(t) = � ˙⇣(t) + ⇢̂̇(t)

Defining � = � 1
�
f 00

(⇤
)⇣⇤ > 0 and substituting in from (9.30) for ˙⇣(t) yields

̈(t) = � ((t)� ⇤
) + ⇢̂̇(t)

̈(t)� ⇢̂̇(t)� �(t) = ��⇤
(9.31)

We know how to solve this second order di↵erential equation; we just have

to find the general solution to the homogeneous equation and a particular

solution to the nonhomogeneous equation, i.e.

(t) = g(t) + p(t)
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It is straightforward to verify that a particular solution to the nonhomoge-

neous equation is given by p(t) = ⇤. With respect to the general solution

to the homogeneous equation we know that its general form is given by

g(t) = C1e
�1t

+ C2e
�2t

where C1, C2 are two constants and �1,�2 are the two roots of the character-

istic equation

�2 � ⇢̂�� � = 0

�1,2 =

⇢̂

2

±
r

� +

⇢̂2

4

We see that the two roots are real, distinct and one is bigger than zero and

one is less than zero. Let �1 be the smaller and �2 be the bigger root. The

fact that one of the roots is bigger, one is smaller than one implies that locally
around the steady state the dynamic system is saddle-path stable, i.e. there

is a unique stable manifold (path) leading to the steady state. For any value

other than C2 = 0 we will have limt!1 (t) = 1 (or �1) which violates

feasibility. Hence we have that

(t) = ⇤
+ C1e

�1t

(remember that �1 < 0). Finally C1 is determined by the initial condition

(0) = 0 since

(0) = ⇤
+ C1

C1 = (0)� ⇤

and hence the solution for  is

(t) = ⇤
+ ((0)� ⇤

) e�1t

and the corresponding solution for ⇣ can be found from

̇(t) = �⇣(t) + ⇣⇤ + ⇢̂ ((t)� ⇤
)

⇣(t) = ⇣⇤ + ⇢̂ ((t)� ⇤
)� ̇(t)

by simply using the solution for (t). Hence for any given (0) there is a

unique optimal path ((t), ⇣(t)) which converges to the steady state (⇤, ⇣⇤).
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Note that the speed of convergence to the steady state is determined by

|�1| =
����
⇢̂
2 �

q
� 1

�
f 00

(⇤
)⇣⇤ + ⇢̂2

4

���� which is increasing in � 1
�
and decreasing

in ⇢̂. The higher the intertemporal elasticity of substitution, the more are

individuals willing to forgo early consumption for later consumption an the

more rapid does capital accumulation towards the steady state occur. The

higher the e↵ective time discount rate ⇢̂, the more impatient are households

and the stronger they prefer current over future consumption, inducing a

lower rate of capital accumulation.

So far what have we showed? That only paths converging to the unique

steady state can be optimal solutions and that locally, around the steady

state this path is unique, and therefore was referred to as saddle path. This

also means that any potentially optimal path must hit the saddle path in

finite time.

Hence there is a unique solution to the social planners problem that is

graphically given as follows. The initial condition 0 determines the start-

ing point of the optimal path (0). The planner then optimally chooses ⇣(0)
such as to jump on the saddle path. From then on the optimal sequences

((t), ⇣(t))t2[0,1) are just given by the segment of the saddle path from (0)
to the steady state. Convergence to the steady state is asymptotic, mono-

tonic (the path does not jump over the steady state) and exponential. This

indicates that eventually, once the steady state is reached, per capita vari-

ables grow at constant rates g and aggregate variables grow at constant rates

g + n:

c(t) = egt⇣⇤

k(t) = egt⇤

y(t) = egtf(⇤
)

C(t) = e(n+g)t⇣⇤

K(t) = e(n+g)t⇤

Y (t) = e(n+g)tf(⇤
)

Hence the long-run behavior of this model is identical to that of the Solow

model; it predicts that the economy converges to a balanced growth path at

which all per capita variables grow at rate g and all aggregate variables grow

at rate g + n. In this sense we can understand the Cass-Koopmans-Ramsey

model as a micro foundation of the Solow model, with predictions that are

quite similar.
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9.3.4 Decentralization

In this subsection we want to demonstrate that the solution to the social

planners problem does correspond to the (unique) competitive equilibrium

allocation and we want to find prices supporting the Pareto optimal allocation

as a competitive equilibrium.

In the decentralized economy there is a single representative firm that

rents capital and labor services to produce output. As usual, whenever the

firm does not own the capital stock its intertemporal profit maximization

problem is equivalent to a continuum of static maximization problems

max

K(t),L(t)�0
F (K(t), A(t) + (t))� r(t)K(t)� w(t)L(t) (9.32)

taking w(t) and r(t), the real wage rate and rental rate of capital, respectively,

as given.

The representative household (dynasty) maximizes the family’s utility by

choosing per capita consumption and per capita asset holding at each instant

in time. Remember that preferences were given as

u(c) =

Z 1

0

e�⇢tU(c(t))dt (9.33)

The only asset in this economy is physical capital

16
on which the return

is r(t) � �. As before we could introduce notation for the real interest rate

i(t) = r(t) � � but we will take a shortcut and use r(t) � � in the period

household budget constraint. This budget constraint (in per capita terms,

with the consumption good being the numeraire) is given by

c(t) + ȧ(t) + na(t) = w(t) + (r(t)� �) a(t) (9.34)

where a(t) = A(t)
L(t) are per capita asset holdings, with a(0) = 0 given. Note

that the term na(t) enters because of population growth: in order to, say,

keep the per-capita assets constant, the household has to spend na(t) units
to account for its growing size.

17
As with discrete time we have to impose a

condition on the household that rules out Ponzi schemes. At the same time

16Introducing a second asset, say government bonds, is straightforward and you should
do it as an exercise.

17The household’s budget constraint in aggregate (not per capita) terms is

C(t) + Ȧ(t) = L(t)w(t) + (r(t)� �)A(t)
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we do not prevent the household from temporarily borrowing (for the house-

holds a is perceived as an arbitrary asset, not necessarily physical capital).

A standard condition that is widely used is to require that the household

debt holdings in the limit do no grow at a faster rate than the interest rate,

or alternatively put, that the time zero value of household debt has to be

nonnegative in the limit.

lim

t!1
a(t)e�

R t
0 (r(⌧)���n)d⌧ � 0 (9.35)

Note that with a path of interest rates r(t)� �, the value of one unit of the

consumption good at time t in units of the period consumption good is given

by e�
R t
0 (r(⌧)��)d⌧ . We immediately have the following definition of equilibrium

Definition 111 A sequential markets equilibrium are allocations for the house-
hold (c(t), a(t))t2[0,1), allocations for the firm (K(t), L(t))t2[0,1) and prices
(r(t), w(t))t2[0,1) such that

1. Given prices (r(t), w(t))t2[0,1) and 0, the allocation (c(t), a(t))t2[0,1)

maximizes (9.33) subject to (9.34), for all t, and (9.35) and c(t) � 0.

2. Given prices (r(t), w(t))t2[0,1), the allocation (K(t), L(t))t2[0,1) solves
(9.32)

3.

L(t) = ent

L(t)a(t) = K(t)

L(t)c(t) + ˙K(t) + �K(t) = F (K(t), L(t))

This definition is completely standard; the three market clearing con-

ditions are for the labor market, the capital market and the goods market,

respectively. Note that we can, as for the discrete time case, define an Arrow-

Debreu equilibrium and show equivalence between Arrow-Debreu equilibria

Dividing by L(t) yields

c(t) +
Ȧ(t)

L(t)
= w(t) + (r(t)� �) a(t)

and expanding Ȧ(t)
L(t) gives the result in the main text.
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and sequential market equilibria under the imposition of the no Ponzi con-

dition (9.35). A heuristic argument will do here. Rewrite (9.34) as

c(t) = w(t) + (r(t)� �) a(t)� ȧ(t)� na(t)

then multiply both sides by e�
R t
0 (r(⌧)�n��)d⌧

and integrate from t = 0 to t = T
to get

Z T

0

c(t)e�
R t
0 (r(⌧)�n��)d⌧dt =

Z T

0

w(t)e�
R t
0 (r(⌧)�n��)d⌧dt (9.36)

�
Z T

0

[ȧ(t)� (r(t)� n� �) a(t)] e�
R t
0 (r(⌧)�n��)d⌧dt

But if we define

F (t) = a(t)e�
R t
0 (r(⌧)�n��)d⌧

then

F 0
(t) = ȧ(t)e�

R t
0 (r(⌧)�n��)d⌧dt� a(t)e�

R t
0 (r(⌧)�n��)d⌧

[r(t)� � � n]

= [ȧ(t)� (r(t)� n� �) a(t)] e�
R t
0 (r(⌧)�n��)d⌧

so that (9.36) becomes

Z T

0

c(t)e�
R t
0 (r(⌧)�n��)d⌧dt =

Z T

0

w(t)e�
R t
0 (r(⌧)�n��)d⌧dt+ F (0)� F (T )

=

Z T

0

w(t)e�
R t
0 (r(⌧)�n��)d⌧dt+ a(0)� a(T )e�

R T
0 (r(⌧)�n��)d⌧

Now taking limits with respect to T and using (9.35) yields

Z 1

0

c(t)e�
R t
0 (r(⌧)�n��)d⌧dt =

Z 1

0

w(t)e�
R t
0 (r(⌧)�n��)d⌧dt+ a(0)

or defining Arrow-Debreu prices as p(t) = e�
R t
0 (r(⌧)��)d⌧

we have

Z 1

0

p(t)C(t)dt =

Z 1

0

p(t)L(t)w(t)dt+ a(0)L(0)

where C(t) = L(t)c(t) and we used the fact that L(0) = 1. But this is a

standard Arrow-Debreu budget constraint. Hence by imposing the correct
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no Ponzi condition we have shown that the collection of sequential budget

constraints is equivalent to the Arrow Debreu budget constraint with appro-

priate prices

p(t) = e�
R t
0 (r(⌧)��)d⌧

The rest of the proof that the set of Arrow-Debreu equilibrium allocations

equals the set of sequential markets equilibrium allocations is obvious.

18

We now want to characterize the equilibrium; in particular we want to

show that the resulting dynamic system is identical to that arising for the

social planner problem, suggesting that the welfare theorems hold for this

economy. From the firm’s problem we obtain

r(t) = FK(K(t), A(t)L(t)) = FK

✓
K(t)

A(t)L(t)
, 1

◆
(9.37)

= f 0
((t))

and by zero profits in equilibrium

w(t)L(t) = F (K(t), A(t)L(t))� r(t)K(t) (9.38)

!(t) =

w(t)

A(t)
= f((t))� f 0

((t))(t)

w(t) = A(t) (f((t))� f 0
((t))(t))

From the goods market equilibrium condition we find as before (by dividing

by A(t)L(t))

L(t)c(t) + ˙K(t) + �K(t) = F (K(t), L(t))

̇(t) = f((t))� (n+ � + n)(t)� ⇣(t) (9.39)

Now we analyze the household’s decision problem. First we rewrite the utility

function and the household’s budget constraint in intensive form. Making

the assumption that the period utility is of CRRA form we again obtain

(9.17). With respect to the individual budget constraint we obtain (again by

18Note that no equilbrium can exist for prices satisfying

lim
t!1

p(t)L(t) = lim
t!1

e

�
R t
0 (r(⌧)���n)d⌧

> 0

because otherwise labor income of the family is unbounded.
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dividing by A(t))

c(t) + ȧ(t) + na(t) = w(t) + (r(t)� �) a(t)

↵̇(t) = !(t) + (r(t)� (� + n+ g))↵(t)� ⇣(t)

where ↵(t) = a(t)
A(t) . The individual state variable is the per-capita asset hold-

ings in intensive form ↵(t) and the individual control variable is ⇣(t). Forming

the Hamiltonian yields

H(t,↵, ⇣,�) = e�⇢̂tU(⇣(t)) + �(t) [!(t) + (r(t)� (� + n+ g))↵(t)� ⇣(t)]

The first order condition yields

e�⇢̂tU 0
(⇣(t)) = �(t) (9.40)

and the time derivative of the Lagrange multiplier is given by

˙�(t) = � [r(t)� (� + n+ g)]�(t) (9.41)

The transversality condition is given by

lim

t!1
�(t)↵(t) = 0

Now we proceed as in the social planners case. We first di↵erentiate (9.40)
with respect to time to obtain

e�⇢̂tU 00
(⇣(t)) ˙⇣(t)� ⇢̂e�⇢̂tU 0

(⇣(t)) = ˙�(t)

and use this and (9.40) to substitute out for the costate variable in (9.41) to
obtain

˙�(t)

�(t)
= � [r(t)� (� + n+ g)]

= �⇢̂+
U 00

(⇣(t)) ˙⇣(t)

U 0
(⇣(t))

= �⇢̂� �
˙⇣(t)

⇣(t)

or

˙⇣(t) =
1

�
[r(t)� (� + n+ g + ⇢̂)] ⇣(t)



268 CHAPTER 9. CONTINUOUS TIME GROWTH THEORY

Note that this condition has an intuitive interpretation: if the interest rate

is higher than the e↵ective subjective time discount factor, the individual

values consumption tomorrow relatively higher than the market and hence

˙⇣(t) > 0, i.e. consumption is increasing over time.

Finally we use the profit maximization conditions of the firm to substitute

r(t) = f 0
((t)) to obtain

˙⇣(t) =
1

�
[f 0

((t))� (� + n+ g + ⇢̂)] ⇣(t)

Combining this with the resource constraint (9.39) gives us the same dy-

namic system as for the social planners problem, with the same initial con-

dition (0) = 0. And given that the capital market clearing condition reads

L(t)a(t) = K(t) or ↵(t) = (t) the transversality condition is identical to

that of the social planners problem. Obviously the competitive equilibrium

allocation coincides with the (unique) Pareto optimal allocation; in particu-

lar it also possesses the saddle path property. Competitive equilibrium prices

are simply given by

r(t) = f 0
((t))

w(t) = A(t) (f((t))� f 0
((t))(t))

Note in particular that real wages are growing at the rate of technologi-

cal progress along the balanced growth path. This argument shows that in

contrast to the OLG economies considered before here the welfare theorems

apply. In fact, this section should be quite familiar to you; it is nothing else

but a repetition of Chapter 3 in continuous time, executed to make you fa-

miliar with continuous time optimization techniques. In terms of economics,

the current model provides a micro foundation of the basic Solow model.

It removes the problem of a constant, exogenous saving rate. However the

engine of growth is, as in the Solow model, exogenously given technological

progress. The next step in our analysis is to develop models that do not as-
sume economic growth, but rather derive it as an equilibrium phenomenon.

These models are therefore called endogenous growth models (as opposed to

exogenous growth models).

9.4 Endogenous Growth Models

The second main problem of the Solow model, which is shared with the

Cass-Koopmans model of growth is that growth is exogenous: without ex-
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ogenous technological progress there is no sustained growth in per capita

income and consumption. In this sense growth in these models is more as-

sumed rather than derived endogenously as an equilibrium phenomenon. The

key assumption driving the result, that, absent technological progress the

economy will converge to a no-growth steady state is the assumption of di-

minishing marginal product to the production factor that is accumulated,

namely capital. As economies grow they accumulate more and more capital,

which, with decreasing marginal products, yields lower and lower returns.

Absent technological progress this force drives the economy to the steady

state. Hence the key to derive sustained growth without assuming it being

created by exogenous technological progress is to pose production technolo-

gies in which marginal products to accumulable factors are not driven down

as the economy accumulates these factors.

We will start our discussion of these models with a stylized version of

the so called AK-model, then turn to models with externalities as in Romer

(1986) and Lucas (1988) and finally look at Romer’s (1990) model of endoge-

nous technological progress.

9.4.1 The Basic AK-Model

Even though the basic AK-model may seem unrealistic it is a good first step

to analyze the basic properties of most one-sector competitive endogenous

growth models. The basic structure of the economy is very similar to the

Cass-Koopmans model. Assume that there is no technological progress. The

representative household again grows in size at population growth rate n > 0

and its preferences are given by

U(c) =

Z 1

0

e�⇢t c(t)
1��

1� �
dt

Its budget constraint is again given by

c(t) + ȧ(t) + na(t) = w(t) + (r(t)� �) a(t)

with initial condition a(0) = k0. We impose the same condition to rule out

Ponzi schemes as before

lim

t!1
a(t)e�

R t
0 (r(⌧)���n)d⌧ � 0
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The main di↵erence to the previous model comes from the specification of

technology. We assume that output is produced by a constant returns to

scale technology only using capital

Y (t) = AK(t)

The aggregate resource constraint is, as before, given by

˙K(t) + �K(t) + C(t) = Y (t)

This completes the description of the model. The definition of equilibrium is

completely standard and hence omitted. Also note that this economy does

not feature externalities, tax distortions or the like that would invalidate the

welfare theorems. So we could, in principle, solve a social planners problem

to obtain equilibrium allocations and then find supporting prices. Given

that for this economy the competitive equilibrium itself is straightforward to

characterize we will take a shot at it directly.

Let’s first consider the household problem. Forming the Hamiltonian and

carrying out the same manipulations as for the Cass-Koopmans model yields

as Euler equation (note that there is no technological progress here)

ċ(t) =

1

�
[r(t)� (n+ � + ⇢)] c(t)

�c(t) =

ċ(t)

c(t)
=

1

�
[r(t)� (n+ � + ⇢)]

The transversality condition is given as

lim

t!1
�(t)a(t) = lim

t!1
e�⇢tc(t)��a(t) (9.42)

The representative firm’s problem is as before

max

K(t),L(t)�0
AK(t)� r(t)K(t)� w(t)L(t)

and yields as marginal cost pricing conditions

r(t) = A

w(t) = 0
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Hence the marginal product of capital and therefore the real interest rate are

constant across time, independent of the level of capital accumulated in the

economy. Plugging into the consumption Euler equation yields

�c(t) =
ċ(t)

c(t)
=

1

�
[A� (n+ � + ⇢)]

i.e. the consumption growth rate is constant (always, not only along a bal-

anced growth path) and equal to A� (n+ �+⇢). Integrating both sides with

respect to time, say, until time t yields

c(t) = c(0)e
1
�
[A�(n+�+⇢)]t

(9.43)

where c(0) is an endogenous variable that yet needs to be determined. We

now make the following assumptions on parameters

[A� (n+ � + ⇢)] > 0 (9.44)

1� �

�


A� (n+ �)� ⇢

1� �

�
= � < 0 (9.45)

The first assumption, requiring that the interest rate exceeds the population

growth rate plus the time discount rate, will guarantee positive growth of

per capita consumption. It basically requires that the production technology

is productive enough to generate sustained growth. The second assump-

tion assures that utility from a consumption stream satisfying (9.43) remains

bounded since

Z 1

0

e�⇢t c(t)
1��

1� �
dt =

Z 1

0

e�⇢t c(0)
1��e

1��
�

[A�(n+�+⇢)]t

1� �
dt

=

c(0)1��

1� �

Z 1

0

e[
1��
� [

A�(n+�)� ⇢
1�� ]]

tdt

< 1 if and only if

1� �

�


A� (n+ �)� ⇢

1� �

�
< 0

From the aggregate resource constraint we have

˙K(t) + �K(t) + C(t) = AK(t)

c(t) + ˙k(t) = Ak(t)� (n+ �)k(t) (9.46)
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Dividing both sides by k(t) yields

�k(t) =
˙k(t)

k(t)
= A� (n+ �)� c(t)

k(t)

In a balanced growth path �k(t) is constant over time, and hence k(t) is

proportional to c(t), which implies that along a balanced growth path

�k(t) = �c(t) = A� (n+ � + ⇢)

i.e. not only do consumption and capital grow at constant rates (this is

by definition of a balanced growth path), but they grow at the same rate

A�(n+�+⇢). We already saw that consumption always grows at a constant

rate in this model. We will now argue that capital does, too, right away from

t = 0. In other words, we will show that transition to the (unique) balanced

growth path is immediate.

Plugging in for c(t) in equation (9.46) yields

˙k(t) = �c(0)e
1
�
[A�(n+�+⇢)]t

+ Ak(t)� (n+ �)k(t)

which is a first order nonhomogeneous di↵erential equation. The general

solution to the homogeneous equation is

kg(t) = C1e
(A�n��)t

A particular solution to the nonhomogeneous equation is (verify this by plug-

ging into the di↵erential equation)

kp(t) =
�c(0)e

1
�
[A�(n+�+⇢)]t

�

Hence the general solution to the di↵erential equation is given by

k(t) = C1e
(A�n��)t � c(0)

�
e

1
�
[A�(n+�+⇢)]t

where � =

1��
�

⇥
A� (n+ �)� ⇢

1��

⇤
< 0. Now we use that in equilibrium

a(t) = k(t). From the transversality condition we have that, using (9.43)

lim

t!1
e�⇢tc(t)��k(t) = lim

t!1
e�⇢tc(0)��e�[A�(n+�+⇢)]t


C1e

(A�n��)t � c(0)

�
e

1
�
[A�(n+�+⇢)]t

�

= c(0)��


C1 lim

t!1
e[�⇢�A+n+�+⇢+A�n��]t � c(0)

�
lim

t!1
e[�⇢�A+n+�+⇢+ 1

�
[A�(n+�+⇢)]

]

t

�

= c(0)��


C1 � c(0)

�
lim

t!1
e

1��
� [

A�(n+�)� ⇢
1�� ]

�
= 0 if and only if C1 = 0
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because of the assumed inequality in (9.45). Hence

k(t) = �c(0)

�
e

1
�
[A�(n+�+⇢)]t

= �c(t)

�

i.e. the capital stock is proportional to consumption. Since we already found

that consumption always grows at a constant rate �c = A � (n + � + ⇢),
so does k(t). The initial condition k(0) = k0 determines the level of capital,

consumption c(0) = ��k(0) and output y(0) = Ak(0) that the economy

starts from; subsequently all variables grow at constant rate �c = �k = �y.
Note that in this model the transition to a balanced growth path from any

initial condition k(0) is immediate.

In this simple model we can explicitly compute the saving rate for any

point in time. It is given by

s(t) =
Y (t)� C(t)

Y (t)
=

Ak(t)� c(t)

Ak(t)
= 1 +

�

A
= s 2 (0, 1)

i.e. the saving rate is constant over time (as in the original Solow model

and in contrast to the Cass-Koopmans model where the saving rate is only

constant along a balanced growth path).

In the Solow and Cass-Koopmans model the growth rate of the economy

was given by �c = �k = �y = g, the growth rate of technological progress.

In particular, savings rates, population growth rates, depreciation and the

subjective time discount rate a↵ect per capita income levels, but not growth
rates. In contrast, in the basic AK-model the growth rate of the economy is

a↵ected positively by the parameter governing the productivity of capital, A
and negatively by parameters reducing the willingness to save, namely the

e↵ective depreciation rate � + n and the degree of impatience ⇢. Any policy

a↵ecting these parameters in the Solow or Cass-Koopmans model have only

level, but no growth rate e↵ects, but have growth rate e↵ects in the AK-

model. Hence the former models are sometimes referred to as “income level

models” whereas the others are referred to as “growth rate models”.

With respect to their empirical predictions, the AK-model does not pre-

dict convergence. Suppose all countries share the same characteristics in

terms of technology and preferences, and only di↵er in terms of their initial

capital stock. The Solow and Cass-Koopmans model then predict absolute

convergence in income levels and higher growth rates in poorer countries,

whereas the AK-model predicts no convergence whatsoever. In fact, since
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all countries share the same growth rate and all economies are on the bal-

anced growth path immediately, initial di↵erences in per capita capital and

hence per capita income and consumption persist forever and completely.

The absence of decreasing marginal products of capital prevents richer coun-

tries to slow down in their growth process as compared to poor countries.

If countries di↵er with respect to their characteristics, the Solow and Cass-

Koopmans model predict conditional convergence. The AK-model predicts

that di↵erent countries grow at di↵erent rates. Hence it may be possible

that the gap between rich and poor countries widen or that poor countries

take over rich countries. Hence one important test of these two competing

theories of growth is an empirical exercise to determine whether we in fact

see absolute and/or conditional convergence. Note that we discuss the pre-

dictions of the basic AK-model with respect to convergence at length here

because the following, more sophisticated models will share the qualitative

features of the simple model.

9.4.2 Models with Externalities

The main assumption generating sustained growth in the last chapter was the

presence of constant returns to scale with respect to production factors that

are, in contrast to raw labor, accumulable. Otherwise eventually decreasing

marginal products set in and bring the growth process to a halt. One ob-

vious unsatisfactory element of the previous model was that labor was not

needed for production and that therefore the capital share equals one. Even

if one interprets capital broadly as including physical capital, this assumption

may be rather unrealistic. We, i.e. the growth theorist faces the following

dilemma: on the one hand we want constant returns to scale to accumulable

factors, on the other hand we want labor to claim a share of income, on the

third hand we can’t deal with increasing returns to scale on the firm level as

this destroys existence of competitive equilibrium. (At least) two ways out of

this problem have been proposed: a) there may be increasing returns to scale

on the firm level, but the firm does not perceive it this way because part of

its inputs come from positive externalities beyond the control of the firm b)

a departure from perfect competition towards monopolistic competition. We

will discuss the main contributions in both of these proposed resolutions.
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Romer (1986)

We consider a simplified version of Romer’s (1986) model. This model is very

similar in spirit and qualitative results to the one in the previous section.

However, the production technology is modified in the following form. Firms

are indexed by i 2 [0, 1], i.e. there is a continuum of firms of measure

1 that behave competitively. Each firm produces output according to the

production function

yi(t) = F (ki(t), li(t)K(t))

where ki(t) and li(t) are labor and capital input of firm i, respectively, and
K(t) =

R
ki(t)di is the average capital stock in the economy at time t. We

assume that firm i, when choosing capital input ki(t), does not take into

account the e↵ect of ki(t) on K(t).19 We make the usual assumption on F :

constant returns to scale with respect to the two inputs ki(t) and li(t)K(t),
positive but decreasing marginal products (we will denote by F1 the partial

derivative with respect to the first, by F2 the partial derivative with respect

to the second argument), and Inada conditions.

Note that F exhibits increasing returns to scale with respect to all three

factors of production

F (�ki(t),�li(t)�K(t)) = F (�ki(t),�
2li(t)K(t)) > �F (ki(t), li(t)K(t)) for all � > 1

F (�ki(t),� [li(t)K(t)]) = �F (ki(t), li(t)K(t))

but since the firm does not realize its impact on K(t), a competitive equi-

librium will exist in this economy. It will, however, in general not be Pareto

optimal. This is due to the externality in the production technology of the

firm: a higher aggregate capital stock makes individual firm’s workers more

productive, but firms do not internalize this e↵ect of the capital input de-

cision on the aggregate capital stock. As we will see, this will lead to less

investment and a lower capital stock than socially optimal.

The household sector is described as before, with standard preferences

and initial capital endowments k(0) > 0. For simplicity we abstract from

population growth (you should work out the model with population growth).

19Since we assume that there is a continuum of firms this assumption is completely
rigourous as Z 1

0
ki(t)di =

Z 1

0
k̃i(t)di

as long as ki(t) = k̃i(t) for all but countably many agents.
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However we assume that the representative household in the economy has

a size of L identical people (we will only look at type identical allocations).

We do this in order to discuss “scale e↵ects”, i.e. the dependence of income

levels and growth rates on the size of the economy.

Since this economy is not quite as standard as before we define a com-

petitive equilibrium

Definition 112 A competitive equilibrium are allocations (ĉ(t), â(t))t2[0,1)

for the representative household, allocations (ˆki(t), ˆli(t))t2[0,1),i2[0,1] for firms,

an aggregate capital stock ˆK(t)t2[0,1) and prices (r̂(t), ŵ(t))t2[0,1) such that

1. Given (r̂(t), ŵ(t))t2[0,1) (ĉ(t), â(t))t2[0,1) solve

max

(c(t),a(t))t2[0,1)

Z 1

0

e�⇢t c(t)
1��

1� �
dt

s.t. c(t) + ȧ(t) = ŵ(t) + (r̂(t)� �) a(t) with a(0) = k(0) given

c(t) � 0

lim

t!1
a(t)e�

R t
0 (r̂(⌧)��)d⌧ � 0

2. Given r̂(t), ŵ(t) and ˆK(t) for all t and all i, ˆki(t), ˆli(t) solve

max

ki(t),li(t)�0
F (ki(t), li(t) ˆK(t))� r̂(t)ki(t)� ŵ(t)li(t)

3. For all t

Lĉ(t) + ḃK(t) + ˆK(t)�(t) =

Z 1

0

F (

ˆki(t), ˆli(t) ˆK(t))di

Z 1

0

ˆli(t)di = L

Z 1

0

ˆki(t)di = Lâ(t)

4. For all t Z 1

0

ˆki(t)di = ˆK(t)
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The first element of the equilibrium definition is completely standard. In

the firm’s maximization problem the important feature is that the equilib-
rium average capital stock is taken as given by individual firms. The market

clearing conditions for goods, labor and capital are straightforward. Finally

the last condition imposes rational expectations: what individual firms per-

ceive to be the average capital stock in equilibrium is the average capital

stock, given the firms’ behavior, i.e. equilibrium capital demand.

Given that all L households are identical it is straightforward to define a

Pareto optimal allocation and it is easy to see that it must solve the following
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social planners problem

20

max

(c(t),K(t))t2[0,1)�0

Z 1

0

e�⇢t c(t)
1��

1� �
dt

s.t. Lc(t) + ˙K(t) + �K(t) = F (K(t), K(t)L) with K(0) = Lk(0) given

20The social planner has the power to dictate how much each firm produces and how
much inputs to allocate to that firm. Since production has no intertemporal links it is
obvious that the planners maximization problem can solved in two steps: first the planner
decides on aggregate variables c(t) andK(t) and then she decides how to allocate aggregate
inputs L and K(t) between firms. The second stage of this problem is therefore

max
li(t),ki(t)�0

Z 1

0
F

✓
ki(t), li(t)

Z 1

0
kj(t)dj

�◆
di

s.t.

Z 1

0
ki(t) = K(t)

Z 1

0
li(t) = L(t)

i.e. given the aggregate amount of capital chosen the planner decides how to best allocate
it. Let µ and � denote the Lagrange multipliers on the two constraints.
First order conditions with respect to li(t) imply that

F2 (ki(t), li(t)K(t))K(t) = �

or, since F2 is homogeneous of degree zero

F2

✓
ki(t)

li(t)
,K(t)

◆
K(t) = �

which indicates that the planner allocates inputs so that each firm has the same capital
labor ratio. Denote this common ratio by

� =
ki(t)

li(t)
for all i 2 [0, 1]

=
K(t)

L

But then total output becomes
Z 1

0
F

✓
ki(t), li(t)

Z 1

0
kj(t)dj

�◆
di =

Z 1

0
ki(t)F (1,

K(t)

�

)di

= F (1,
K(t)

�

)K(t)

F (K(t),K(t)L)

How much production the planner allocates to each firm hence does not matter; the
only important thing is that she equalizes capital-labor ratios across firms. Once she does,
the production possibilies for any given choice of K(t) are given by F (K(t),K(t)L).
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Note that the social planner, in contrast to the competitively behaving

firms, internalizes the e↵ect of the average (aggregate) capital stock on labor

productivity. Let us start with this social planners problem. Forming the

Hamiltonian and manipulation the optimality conditions yields as socially

optimal growth rate for consumption

�SP
c (t) =

ċ(t)

c(t)
=

1

�
[F1(K(t), K(t)L) + F2(K(t), K(t)L)L� (� + ⇢)]

Note that, since F is homogeneous of degree one, the partial derivatives are

homogeneous of degree zero and hence

F1(K(t), K(t)L) + F2(K(t), K(t)L)L = F1(1,
K(t)L

K(t)
) + F2(1,

K(t)L

K(t)
)L

= F1(1, L) + F2(1, L)L

and hence the growth rate of consumption

ċ(t)

c(t)
=

1

�
[F1(1, L) + F2(1, L)L� (� + ⇢)]

is constant over time. By dividing the aggregate resource constraint by K(t)
we find that

L
c(t)

K(t)
+

˙K(t)

K(t)
+ � = F (1, L)

and hence along a balanced growth path �SP
K = �SP

k = �SP
c . As before the

transition to the balanced growth path is immediate, which can be shown

invoking the transversality condition as before.

Now let’s turn to the competitive equilibrium. From the household prob-

lem we immediately obtain as Euler equation

�CE
c (t) =

ċ(t)

c(t)
=

1

�
[r(t)� (� + ⇢)]

The firm’s profit maximization condition implies

r(t) = F1(ki(t), li(t)K(t))
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But since all firms are identical and hence choose the same allocations

21
we

have that

ki(t) = k(t) =

Z 1

0

k(t)di = K(t)

li(t) = L

and hence

r(t) = F1(K(t), K(t)L) = F1(1, L)

Hence the growth rate of per capita consumption in the competitive equilib-

rium is given by

�CE
c (t) =

ċ(t)

c(t)
=

1

�
[F1(1, L)� (� + ⇢)]

and is constant over time, not only in the steady state. Doing the same

manipulation with resource constraint we see that along a balanced growth

path the growth rate of capital has to equal the growth rate of consumption,

i.e. �CE
K = �CE

k = �CE
c . Again, in order to obtain sustained endogenous

growth we have to assume that the technology is su�ciently productive, or

F1(1, L)� (� + ⇢) > 0

Using arguments similar to the ones above we can show that in this econ-

omy transition to the balanced growth path is immediate, i.e. there are no

transition dynamics.

Comparing the growth rates of the competitive equilibrium with the so-

cially optimal growth rates we see that, since F2(1, L)L > 0 the competitive

economy grows ine�ciently slow, i.e. �CE
c < �SP

c . This is due to the fact

that competitive firms do not internalize the productivity-enhancing e↵ect

of higher average capital and hence under-employ capital, compared to the

social optimum. Put otherwise, the private returns to investment (saving)

are too low, giving rise to underinvestment and slow capital accumulation.

Compared to the competitive equilibrium the planner chooses lower period

zero consumption and higher investment, which generates a higher growth

rate. Obviously welfare is higher in the socially optimal allocation than under

21This is without loss of generality. As long as firms choose the same capital-labor
ratio (which they have to in equilibrium), the scale of operation of any particular firm is
irrelevant.
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the competitive equilibrium allocation (since the planner can always choose

the competitive equilibrium allocation, but does not find it optimal in general

to do so). In fact, under special functional form assumptions on F we could

derive both competitive and socially optimal allocations directly and com-

pare welfare, showing that the lower initial consumption level that the social

planner dictates is more than o↵set by the subsequently higher consumption

growth.

An obvious next question is what type of policies would be able to remove

the ine�ciency of the competitive equilibrium? The answer is obvious once

we realize the source of the ine�ciency. Firms do not take into account the

externality of a higher aggregate capital stock, because at the equilibrium

interest rate it is optimal to choose exactly as much capital input as they do

in a competitive equilibrium. The private return to capital (i.e. the private

marginal product of capital in equilibrium equals F1(1, L) whereas the social
return equals F1(1, L) + F2(1, L)L. One way for the firms to internalize the

social returns in their private decisions is to pay them a subsidy of F2(1, L)L
for each unit of capital hired. The firm would then face an e↵ective rental

rate of capital of

r(t)� F2(1, L)L

per unit of capital hired and would hire more capital. Since all factor pay-

ments go to private households, total capital income from a given firm is

given by [r(t) + F2(1, L)L] ki(t), i.e. given by the (now lower) return on cap-

ital plus the subsidy. The higher return on capital will induce the household

to consume less and save more, providing the necessary funds for higher cap-

ital accumulation. These subsidies have to be financed, however. In order to

reproduce the social optimum as a competitive equilibrium with subsidies it

is important not to introduce further distortions of private decisions. A lump

sum tax on the representative household in each period will do the trick, not

however a consumption tax (at least not in general) or a tax that taxes factor

income at di↵erent rates.

The empirical predictions of the Romer model with respect to the con-

vergence discussion are similar to the predictions of the basic AK-model and

hence not further discussed. An interesting property of the Romer model and

a whole class of models following this model is the presence of scale e↵ects.

Realizing that F1(1, L) = F1(
1
L
, 1) and F1(1, L) + F2(1, L)L = F (1, L) (by
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Euler’s theorem) we find that

@�CE
c

@L
= � 1

�L2
F11(1, L) > 0

@�SP
c

@L
=

F2(1, L)

�
> 0

i.e. that the growth rate of a country should grow with its size (more precisely,

with the size of its labor force). This result is basically due to the fact that the

higher the number of workers, the more workers benefit form the externality

of the aggregate (average) capital stock. Note that this scale e↵ect would

vanish if, instead of the aggregate capital stock K the aggregate capital stock

per worker

K
L

would generate the externality. The prediction of the model

that countries with a bigger labor force are predicted to grow faster has

led some people to dismiss this type of endogenous models as empirically

relevant. Others have tried, with some, but not big success, to find evidence

for a scale e↵ect in the data. The question seems unsettled for now, but I

am sceptical whether this prediction of the model(s) can be identified in the

data.

Lucas (1988)

Whereas Romer (1986) stresses the externalities generated by a high economy-

wide capital stock, Lucas (1988) focuses on the e↵ect of externalities gener-

ated by human capital. You will write a good thesis because you are around

a bunch of smart colleagues with high average human capital from which you

can learn. In other respects Lucas’ model is very similar in spirit to Romer

(1986), unfortunately much harder to analyze. Hence we will only sketch the

main elements here.

The economy is populated by a continuum of identical, infinitely lived

households that are indexed by i 2 [0, 1]. They value consumption according

to standard CRRA utility. There is a single consumption good in each period.

Individuals are endowed with hi(0) = h0 units of human capital and ki(0) =
k0 units of physical capital. In each period the households make the following

decisions

• what fraction of their time to spend in the production of the consump-

tion good, 1 � si(t) and what fraction to spend on the accumulation

of new human capital, si(t). A household that spends 1 � si(t) units
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of time in the production of the consumption good and has a level of

human capital of hi(t) supplies (1� si(t))hi(t) units of e↵ective labor,

and hence total labor income is given by (1� si(t))hi(t)w(t)

• how much of the current labor income to consume and how much to

save for tomorrow

The budget constraint of the household is then given as

ci(t) + ȧi(t) = (r(t)� �)ai(t) + (1� si(t))hi(t)w(t)

Human capital is assumed to accumulate according to the accumulation equa-

tion

˙hi(t) = ✓hi(t)si(t)� �hi(t)

where ✓ > 0 is a productivity parameter for the human capital production

function. Note that this formulation implies that the time cost needed to

acquire an extra 1% of human capital is constant, independent of the level

of human capital already acquired. Also note that for human capital to the

engine of sustained endogenous economic growth it is absolutely crucial that

there are no decreasing marginal products of h in the production of human

capital; if there were then eventually the growth in human capital would

cease and the growth in the economy would stall.

A household then maximizes utility by choosing consumption ci(t), time

allocation si(t) and asset levels ai(t) as well as human capital levels hi(t),
subject to the budget constraint, the human capital accumulation equation,

a standard no-Ponzi scheme condition and nonnegativity constraints on con-

sumption as well as human capital, and the constraint si(t) 2 [0, 1]. There is
a single representative firm that hires labor L(t) and capital K(t) for rental
rates r(t) and w(t) and produces output according to the technology

Y (t) = AK(t)↵L(t)1�↵H(t)�

where ↵ 2 (0, 1), � > 0. Note that the firm faces a production externality in

that the average level of human capital in the economy, H(t) =
R 1

0 hi(t)di en-
ters the production function positively. The firm acts competitive and treats

the average (or aggregate) level of human capital as exogenously given. Hence

the firm’s problem is completely standard. Note, however, that because of

the externality in production (which is beyond the control of the firm and

not internalized by individual households, although higher average human
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capital means higher wages) this economy again will feature ine�ciency of

competitive equilibrium allocations; in particular it is to be expected that

the competitive equilibrium features underinvestment in human capital.

The market clearing conditions for the goods market, labor market and

capital market are

Z 1

0

ci(t)di+ ˙K(t) + �K(t) = AK(t)↵L(t)1�↵H(t)�

Z 1

0

(1� si(t)hi(t)) di = L(t)

Z 1

0

ai(t)di = K(t)

Rational expectations require that the average level of human capital that is

expected by firms and households coincides with the level that households in

fact choose, i.e. Z 1

0

hi(t)di = H(t)

The definition of equilibrium is then straightforward as is the definition of

a Pareto optimal allocation (if, since all agents are ex ante identical, we

confine ourselves to type-identical allocations, i.e. all individuals have the

same welfare weights in the objective function of the social planner). The

social planners problem that solves for Pareto optimal allocations is given as

max

(c(t),s(t),H(t),K(t))t2[0,1)�0

Z 1

0

e�⇢t c(t)
1��

1� �
dt

s.t. c(t) + ˙K(t) + �K(t) = AK(t)↵((1� s(t)H(t))1�↵H(t)� with K(0) = k0 given

˙H(t) = ✓H(t)s(t)� �H(t) with H(0) = h0 given

s(t) 2 [0, 1]

This model is already so complex that we can’t do much more than simply de-

termine growth rates of the competitive equilibrium and a Pareto optimum,

compare them and discuss potential policies that may remove the ine�ciency

of the competitive equilibrium. In this economy a balanced growth path is an

allocation (competitive equilibrium or social planners) such that consump-

tion, physical and human capital and output grow at constant rates (which

need not equal each other) and the time spent in human capital accumulation

is constant over time.
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Let’s start with the social planner’s problem. In this model we have two

state variables, namelyK(t) and H(t), and two control variables, namely s(t)
and c(t). Obviously we need two co-state variables and the whole dynamical

system becomes more messy. Let �(t) be the co-state variable for K(t) and
µ(t) the co-state variable for H(t). The Hamiltonian is µ̇

H(c(t), s(t), K(t), H(t),�(t), µ(t), t)

= e�⇢t c(t)
1��

1� �
+ �(t)

⇥
AK(t)↵ ((1� s(t)H(t))1�↵ H(t)� � �K(t)� c(t)

⇤

+µ(t) [✓H(t)s(t)� �H(t)]

The first order conditions are

e�⇢tc(t)��
= �(t) (9.47)

µ(t)✓H(t) = �(t)(1� ↵)

"
AK(t)↵ ((1� s(t)H(t))1�↵ H(t)�

(1� s(t))

#
(9.48)

The co-state equations are

˙�(t) = ��(t)↵

"
AK(t)↵ ((1� s(t)H(t))1�↵ H(t)�

K(t)
� �

#
(9.49)

µ̇(t) = ��(t)(1� ↵ + �)

"
AK(t)↵ ((1� s(t)H(t))1�↵ H(t)�

H(t)

#
� µ(t) [✓s(t)� �]

(9.50)

Define Y (t) = AK(t)↵ ((1� s(t)H(t))1�↵ H(t)�. Along a balanced growth
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path we have

˙Y (t)

Y (t)
= �Y (t) = �Y

ċ(t)

c(t)
= �c(t) = �c

˙K(t)

K(t)
= �K(t) = �K

˙H(t)

H(t)
= �H(t) = �H

˙�(t)

�(t)
= ��(t) = ��

µ̇(t)

µ(t)
= �µ(t) = �µ

s(t) = s

Let’s focus on BGP’s. From the definition of Y (t) we have (by log-di↵erentiating)

�Y = a�K + (1� ↵ + �)�H (9.51)

From the human capital accumulation equation we have

�H = ✓s� � (9.52)

From the Euler equation we have

�c =
1

�


↵
Y (t)

K(t)
� (� + ⇢)

�
(9.53)

and hence

�Y = �K (9.54)

From the resource constraint it then follows that

�c = �Y = �K (9.55)

and therefore

�K =

1� ↵ + �

1� ↵
�H (9.56)
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From the first order conditions we have

�� = �⇢� ��c (9.57)

�µ = �� + �Y � �H (9.58)

Divide (9.47) by µ(t) and isolate

�(t)
µ(t) to obtain

�(t)

µ(t)
=

✓H(t)(1� s(t))

(1� ↵)Y (t)

Do the same with (9.50) to obtain

�(t)

µ(t)
= � (�µ + �H)

H(t)

(1� ↵ + �)Y (t)

Equating the last two equations yields

� (�µ + �H)

(1� ↵ + �)
=

✓(1� s)

(1� ↵)

Using (9.58) and (9.55) and (9.52) and (9.56) we finally arrive at

�c =
1

�


(✓ � �)(1� ↵ + �)

1� ↵
� ⇢

�

The other growth rates and the time spent with the accumulation of human

capital can then be easily deduced form the above equations. Be aware of

the algebra.

In general, due to the externality the competitive equilibrium will not be

Pareto optimal; in particular, agents may underinvest into human capital.

From the firms problem we obtain the standard conditions (from now on we

leave out the i index for households

r(t) = ↵
Y (t)

K(t)

w(t) = (1� ↵)
Y (t)

L(t)
= (1� ↵)

Y (t)

(1� s(t))h(t)

Form the Lagrangian for the representative household with state variables

a(t), h(t) and control variables s(t), c(t)

H = e�⇢t c(t)
1��

1� �
+ �(t) [(r(t)� �) a(t) + (1� s(t))h(t)w(t)� c(t)]

+µ(t) [✓h(t)s(t)� �h(t)]
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The first order conditions are

e�⇢tc(t)��
= �(t) (9.59)

�(t)h(t)w(t) = µ(t)✓h(t) (9.60)

and the derivatives of the co-state variables are given by

˙�(t) = ��(t)(r(t)� �) (9.61)

µ̇(t) = ��(t)(1� s(t))w(t)� µ(t)(✓s(t)� �) (9.62)

Imposing balanced growth path conditions gives

�c =

1

�
(��� � ⇢)

�� = �µ � �w = �µ � �Y + �h
�c = �Y = �K

�h =

1� ↵

1� ↵ + �
�Y

Hence

�� = �µ �
✓

�

1� ↵ + �

◆
�c

Using (9.60) and (9.62) we find

�µ = � � ✓

and hence

�c =

1

�
(✓ �

✓
�

1� ↵ + �

◆
�c � (⇢+ ⇢))

�CE
c =

1

� +

�
1�↵+�

(✓ � (⇢+ ⇢))

Compare this to the growth rate a social planner would choose

�SP
c =

1

�


(✓ � �)(1� ↵ + �)

1� ↵
� ⇢

�

We note that if � = 0 (no externality), then both growth rates are iden-

tical ((as they should since then the welfare theorems apply). If, however
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� > 0 and the externality from human capital is present, then if both growth

rates are positive, tedious algebra can show that �CE
c < �SP

c . The competi-

tive economy grows slower than optimal since the private returns to human

capital accumulation are lower than the social returns (agents don’t take

the externality into account) and hence accumulate to little human capital,

lowering the growth rate of human capital.

9.4.3 Models of Technological Progress Based on Mo-
nopolistic Competition: Variant of Romer (1990)

In this section we will present a model in which technological progress, and

hence economic growth, is the result of a conscious e↵ort of profit maximizing

agents to invent new ideas and sell them to other producers, in order to

recover their costs for invention.

22
We envision a world in which competitive

software firms hire factor inputs to produce new software, which is then

sold to intermediate goods producers who use it in the production of a new

intermediate good, which in turn is needed for the production of a final good

which is sold to consumers. In this sense the Romer model (and its followers,

in particular Jones (1995)) are sometimes referred to as endogenous growth

models, whereas the previous growth models are sometimes called only semi-

endogenous growth models.

Setup of the Model

Production in the economy is composed of three sectors. There is a final

goods producing sector in which all firms behave perfectly competitive. These

firms have the following production technology

Y (t) = L(t)1�↵

 Z A(t)

0

xi(t)
1�µdi

! ↵
1�µ

where Y (t) is output, L(t) is labor input of the final goods sector and xi(t)
is the input of intermediate good i in the production of final goods.

1
µ
is

elasticity of substitution between two inputs (i.e. measures the slope of

22I changed and simplified the model a bit, in order to obtain analytic solutions and
make results coparable to previous sections. The model is basically a continuous time
version of the model described in Jones and Manuelli (1998), section 6.
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isoquants), with µ = 0 being the special case in which intermediate inputs

are perfect substitutes. For µ ! 1 we approach the Leontie↵ technology.

Evidently this is a constant returns to scale technology, and hence, without

loss of generality we can normalize the number of final goods producers to 1.

At time t there is a continuum of di↵erentiated intermediate goods in-

dexed by i 2 [0, A(t)], where A(t) will evolve endogenously as described

below. Let A0 > 0 be the initial level of technology. Technological progress

in this model takes the form of an increase in the variety of intermediate

goods. For 0 < µ < 1 this will expand the production possibility frontier

(see below). We will assume this restriction on µ to hold.

Each di↵erentiated product is produced by a single, monopolistically com-

petitive firm. This firm has bought the patent for producing good i and is

the only firm that is entitled to produce good i. The fact, however, that the

intermediate goods are substitutes in production limits the market power of

this firm. Each intermediate goods firm has the following constant returns

to scale production function to produce the intermediate good

xi(t) = ali(t)

where li(t) is the labor input of intermediate goods producer i at date t
and a > 0 is a technology parameter, common across firms, that measures

labor productivity in the intermediate goods sector. We assume that the

intermediate goods producers act competitively in the labor market

Finally there is a sector producing new “ideas”, patents to new interme-

diate products. The technology for this sector is described by

˙A(t) = bX(t)

Note that this technology faces constant returns to scale in the production

of new ideas in that X(t) is the only input in the production of new ideas.

The parameter b measures the productivity of the production of new ideas:

if the ideas producers buy X(t) units of the final good for their production

of new ideas, they generate bX(t) new ideas.

Planner’s Problem

Before we go ahead and more fully describe the equilibrium concept for this

economy we first want to solve for Pareto-optimal allocations. As usual we
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specify consumer preferences as

u(c) =

Z 1

0

e�⇢t c(t)
1��

1� �
dt

The social planner then solves

23

max

c(t),li(t),xi(t),A(t),L(t),X(t)�0

Z 1

0

e�⇢t c(t)
1��

1� �
dt

s.t. c(t) +X(t) = L(t)1�↵

 Z A(t)

0

xi(t)
1�µdi

! ↵
1�µ

L(t) +

Z A(t)

0

li(t)di = 1

xi(t) = ali(t) for all i 2 [0, A(t)]
˙A(t) = bX(t)

This problem can be simplified substantially. Since µ 2 (0, 1) it is obvious

that xi(t) = xj(t) = x(t) for all i, j 2 [0, A(t)] and li(t) = lj(t) = l(t) for all
i, j 2 [0, A(t)].24. Also use the fact that L(t) = 1 � A(t)l(t) to obtain the

23Note that there is no physical capital in this model. Romer (1990) assumes that
intermediate goods producers produce a durable intermediate good that they then rent out
every period. This makes the intermediate goods capital goods, which slightly complicates
the analysis of the model. See the original article for further details.

24Suppose there are only two intermediate goods and one wants to

max
l1(t),l2(t)�0

 
2X

i=1

ali(t)
1�µ

! ↵
1�µ

s.t. l1(t) + l2(t) = L

For µ 2 (0, 1) the isoquant

 
2X

i=1

ali(t)
1�µ

! ↵
1�µ

= C > 0

is strictly convex, with slope strictly bigger than one in absolute value. Given the above
constraint, the maximum is interior and the first order conditions imply l1(t) = l2(t)
immediately. The same logic applies to the integral, where, strictly speaking, we have
to add an “almost everywhere” (since sets of Lebesgue measure zero leave the integral
unchanged). Note that for µ  0 the above argument doesn’t work as we have corner
solutions.
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constraint set

c(t) +X(t) = L(t)1�↵

 Z A(t)

0

xi(t)
1�µdi

! ↵
1�µ

= L(t)1�↵

 
(al(t))1�µ

Z A(t)

0

di

! ↵
1�µ

= L(t)1�↵

 
A(t)

✓
a
1� L(t)

A(t)

◆1�µ
! ↵

1�µ

= a↵L(t)1�↵
(1� L(t))↵ A(t)

↵µ
1�µ

˙A(t) = bX(t)

Finally we note that the optimal allocation of labor solves the static problem

of

max

L(t)2[0,1]
L(t)1�↵

(1� L(t))↵

with solution L(t) = 1�↵. So finally we can write the social planners problem

as

u(c) =

Z 1

0

e�⇢t c(t)
1��

1� �
dt

s.t. c(t) +
˙A(t)

b
= CA(t)⌘ (9.63)

where C = aa(1�↵)1�↵↵↵
and ⌘ =

↵µ
1�µ

> 0 and with A(0) = A0 given. Note

that if 0 < µ < 1, this model boils down to the standard Cass-Koopmans

model, whereas if ⌘ = 1 we obtain the basic AK-model. Finally, if ⌘ > 1

the model will exhibit accelerating growth. Forming the Hamiltonian and

manipulating the first order conditions yields

�c(t) =
1

�

⇥
b⌘CA(t)⌘�1 � ⇢

⇤

Hence along a balanced growth path A(t)⌘�1
has to remain constant over

time. From the ideas accumulation equation we find

˙A(t)

A(t)
=

bX(t)

A(t)



9.4. ENDOGENOUS GROWTH MODELS 293

which implies that along a balanced growth path X and A grow at the same

rate. Dividing () by A(t) yields

c(t)

A(t)
+

˙A(t)

bA(t)
= CA(t)⌘�1

which implies that c grows at the same rate as A and X.
We see that for ⌘ < 1 the economy behaves like the neoclassical growth

model: from A(0) = A0 the level of technology converges to the steady state

A⇤
satisfying

b⌘C

(A⇤
)

1�⌘ = ⇢

X⇤
= 0

c⇤ = C (A⇤
)

⌘

Without exogenous technological progress sustained economic growth in per

capita income and consumption is infeasible; the economy is saddle path

stable as the Cass-Koopmans model.

If ⌘ = 1, then the balanced growth path growth rate is

�c(t) =
1

�
[b⌘C � ⇢] > 0

provided that the technology producing new ideas, manifested in the pa-

rameter b, is productive enough to sustain positive growth. Now the model

behaves as the AK-model, with constant positive growth possible and im-

mediate convergence to the balanced growth path. Note that a condition

equivalent to (9.45) is needed to ensure convergence of the utility generated

by the consumption stream. Finally, for ⌘ > 1 (and A0 > 1) we can show

that the growth rate of consumption (and income) increases over time. Re-

member again that ⌘ =

↵µ
1�µ

, which, a priori, does not indicate the size of

⌘. What empirical predictions the model has therefore crucially depends on

the magnitudes of the capital share ↵ and the intratemporal elasticity of

substitution between inputs, µ.

Decentralization

We have in mind the following market structure. There is a single repre-

sentative final goods producing firm that faces the constant returns to scale
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production technology as discussed above. The firm sells final output at

time t for price p(t) and hires labor L(t) for a (nominal) wage w(t). It also
buys intermediate goods of all varieties for prices pi(t) per unit. The final

goods firm acts competitively in all markets. The final goods producer makes

zero profits in equilibrium (remember CRTS). The representative producer

of new ideas in each period buys final goods X(t) as inputs for price p(t) and
sells a new idea to a new intermediate goods producer for price (t). The
idea producer behaves competitively and makes zero profits in equilibrium

(remember CRTS). There is free entry in the intermediate goods producing

sector. Each new intermediate goods producer has to pay the fixed cost (t)
for the idea and will earn subsequent profits ⇡(⌧), ⌧ � t since he is a mo-

nopolistic competition, by hiring labor li(t) for wage w(t) and selling output

xi(t) for price pi(t). Each intermediate producer takes as given the entire de-

mand schedule of the final producer xd
i (
�!p (t)), where �!p = (p, w, (pi)i2[0,A(t)].

We denote by

�!p �1 all prices but the price of intermediate good i. Free entry
drives net profits to zero, i.e. equates (t) and the (appropriately discounted)

stream of future profits. Now let’s define a market equilibrium (note that

we can’t call it a competitive equilibrium anymore because the intermediate

goods producers are monopolistic competitors).

Definition 113 A market equilibrium is prices (p̂(t), ̂(t), p̂i(t)i2[0,A(t), ŵ(t))t2[0,1),
allocations for the household ĉ(t)t2[0,1), demands for the final goods producer

(

ˆL(�!p (t)), x̂d
i (
�!p (t))i2[0,A(t)])t2[0,1), allocations for the intermediate goods pro-

ducers ((x̂s
i (t), ˆli(t))i2[0,A(t))t=[0,1) and allocations for the idea producer ( ˆA(t), ˆX(t))t=[0,1)

such that

1. Given ̂(0), (p̂(t), ŵ(t))t2[0,1), ĉ(t)t2[0,1) solves

max

c(t)�0

Z 1

0

e�⇢t c(t)
1��

1� �
dt

s.t.

Z 1

0

p(t)c(t)dt =

Z 1

0

w(t)dt+ ̂(0)A0

2. For each i, t, given
�!̂
p �i(t), ŵ(t), and x̂d

i (
�!p (t), (x̂s

i (t), ˆli(t), p̂i(t)) solves

⇡̂i(t) = max

xi(t),li(t),pi(t)�0
pi(t)x

d
i (
�!̂
p (t))� w(t)li(t)

s.t. xi(t) = xd
i (
�!̂
p (t))

xi(t) = ali(t)
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3. For each t, and each �!p � 0, (ˆL(�!p (t)), x̂d
i (
�!p (t)) solves

max

L(t),xi(t)�0
p̂(t)L(t)1�↵

 Z Â(t)

0

xi(t)
1�µdi

! ↵
1�µ

�ŵ(t)L(t)�
Z Â(t)

0

p̂i(t)xi(t)di

4. Given (p̂(t), ĉ(t))t2[0,1, ( ˆA(t), ˆX(t))t=[0,1) solves

max

Z 1

0

c(t) ˙A(t)�
Z 1

0

p(t)X(t)dt

s.t. ˙A(t) = bX(t) with A(0) = A0 given

5. For all t

ˆL(
�!̂
p (t))1�↵

 Z Â(t)

0

x̂d
i (
�!̂
p (t))1�µdi

! ↵
1�µ

=

ˆX(t) + ĉ(t)

x̂s
i (t) = x̂d

i (
�!̂
p (t)) for all i 2 [0, ˆA(t)]

ˆL(t) +

Z Â(t)

0

ˆli(t)di = 1

6. For all t, all i 2 ˆA(t)

̂(t) =

Z 1

t

⇡̂i(⌧)d⌧

Several remarks are in order. First, note that in this model there is no

physical capital. Hence the household only receives income from labor and

from selling initial ideas (of course we could make the idea producers own the

initial ideas and transfer the profits from selling them to the household). The

key equilibrium condition involves the intermediate goods producers. They,

by assumption, are monopolistic competitors and hence can set prices, taking

as given the entire demand schedule of the final goods producer. Since the in-

termediate goods are substitutes in production, the demand for intermediate

good i depends on all intermediate goods prices. Note that the intermediate

goods producer can only set quantity or price, the other is dictated by the de-

mand of the final goods producer. The required labor input follows from the

production technology. Since we require the entire demand schedule for the
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intermediate goods producers we require the final goods producer to solve its

maximization problem for all conceivable (positive) prices. The profit maxi-

mization requirement for the ideas producer is standard (remember that he

behave perfectly competitive by assumption). The equilibrium conditions for

final goods, intermediate goods and labor market are straightforward. The

final condition is the zero profit condition for new entrants into intermediate

goods production, stating that the price of the pattern must equal to future

profits.

It is in general very hard to solve for an equilibrium explicitly in these

type of models. However, parts of the equilibrium can be characterized quite

sharply; in particular optimal pricing policies of the intermediate goods pro-

ducers. Since the di↵erentiated product model is widely used, not only in

growth, but also in monetary economics and particularly in trade, we want

to analyze it more carefully.

Let’s start with the final goods producer. First order conditions with

respect to L(t) and xi(t) entail25

w(t) = (1� ↵)p(t)L(t)�↵

 Z A(t)

0

xi(t)
1�µdi

! ↵
1�µ

=

(1� ↵)p(t)Y (t)

L(t)
(9.64)

pi(t) = ↵p(t)L(t)1�↵

 Z A(t)

0

xi(t)
1�µdi

! ↵
1�µ

�1

xi(t)
�µ

(9.65)

or

xi(t)
µpi(t) = ↵p(t)L(t)1�↵

 Z A(t)

0

xi(t)
1�µdi

! ↵
1�µ

�1

for all i 2 [0, A(t)]

=

↵p(t)Y (t)
R A(t)

0 xi(t)1�µdi

Hence the demand for input xi(t) is given by

xi(t) =

✓
p(t)

pi(t)

◆ 1
µ

 
↵Y (t)

R A(t)

0 xi(t)1�µdi

! 1
µ

(9.66)

=

✓
p(t)

pi(t)

◆ 1
µ

↵Y (t)
µ+↵�1

↵µ L(t)
(1�µ)(1�↵)

↵µ
(9.67)

25Strictly speaking we should worry about corners. However, by assumption µ 2 (0, 1)
will assure that for equilibrium prices corners don’t occur
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As it should be, demand for intermediate input i is decreasing in its relative

price

p(t)
pi(t)

. Now we proceed to the profit maximization problem of the typical

intermediate goods firm. Taking as given the demand schedule derived above,

the firm solves (using the fact that xi(t) = ali(t)

max

pi(t)
pi(t)xi(t)� w(t)xi(t)

a

= xi(t)

✓
pi(t)� w(t)

a

◆

The first order condition reads (note that pi(t) enters xi(t) as shown in (9.67)

xi(t)� 1

µpi(t)
xi(t)

✓
pi(t)� w(t)

a

◆
= 0

and hence

1 =

1

µ
� w(t)

µapi(t)

pi(t) =

w(t)

a(1� µ)
(9.68)

A perfectly competitive firm would have price pi(t) equal marginal cost

w(t)
a
.

The pricing rule of the monopolistic competitor is very simple, he charges a

constant markup

1
1�µ

> 1 over marginal cost. Note that the markup is the

lower the lower µ. For the special case in which the intermediate goods are

perfect substitutes in production, µ = 0 and there is no markup over marginal

cost. Perfect substitutability of inputs forces the monopolistic competitor to

behave as under perfect competition. On the other hand, the closer µ gets

to 1 (in which case the inputs are complements), the higher the markup the

firms can charge. Note that this pricing policy is valid not only in a balanced

growth path. indicating that

Another important implication is that all firms charge the same price,

and therefore have the same scale of production. So let x(t) denote this

common output of firms and p̃(t) = w(t)
a(1�µ) the common price of intermediate

producers. Profits of every monopolistic competitor are given by

⇡(t) = p̃(t)x(t)� w(t)x(t)

a
= µx(t)p̃(t)

=

µ↵p(t)Y (t)

A(t)
(9.69)
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We see that in the case of perfect substitutes profits are zero, whereas prof-

its increase with declining degree of substitutability between intermediate

goods.

26

Using the above results in equations (9.64) and (9.66) yields

w(t)L(t) = (1� ↵)p(t)Y (t) (9.70)

A(t)x(t)p̃(t) = ↵p(t)Y (t) (9.71)

We see that for the final goods producer factor payments to labor, w(t)L(t)
and to intermediate goods, A(t)x(t)p̃(t), exhaust the value of production

p(t)Y (t) so that profits are zero as they should be for a perfectly competi-

tive firm with constant returns to scale. From the labor market equilibrium

condition we find

L(t) = 1� A(t)x(t)

a
(9.72)

and output is given from the production function as

Y (t) = L(t)1�↵x(t)↵A(t)
↵

1�µ
(9.73)

and is used for consumption and investment into new ideas

Y (t) = c(t) +X(t) (9.74)

We assumed that the ideas producer is perfectly competitive. Then it follows

immediately, given the technology

˙A(t) = bX(t)

A(t) = A(0) +

Z t

0

X(⌧)d⌧ (9.75)

that

(t) =
p(t)

b
(9.76)

The zero profit-free entry condition then reads (using (9.69))

p(t)


= µ↵

Z 1

t

p(⌧)Y (⌧)

A(⌧)
d⌧ (9.77)

26This is not a precise argument. One has to consider the general equilibrium e↵ects of
changes in µ on p(t), Y (t), A(t) which is, in fact, quite tricky.



9.4. ENDOGENOUS GROWTH MODELS 299

Finally, let us look at the household maximization problem. Note that, in the

absence of physical capital or any other long-lived asset household problem

does not have any state variable. Hence the household problem is a standard

maximization problem, subject to a single budget constraint. Let � be the

Lagrange multiplier associated with this constraint. The first order condition

reads

e�⇢tc(t)��
= �p(t)

Di↵erentiating this condition with respect to time yields

��e�⇢tc(t)���1ċ(t)� ⇢e�⇢tc(t)��
= �ṗ(t)

and hence

ċ(t)

c(t)
=

1

�

✓
� ṗ(t)

p(t)
� ⇢

◆
(9.78)

i.e. the growth rate of consumption equals the rate of deflation minus the

time discount rate. In summary, the entire market equilibrium is char-

acterized by the 10 equations (9.68) and (9.70) to (9.78) in the 10 vari-

ables x(t), c(t), X(t), Y (t), L(t), A(t),(t), p(t), w(t), p̃(t), with initial condi-

tion A(0) = A0. Since it is, in principle, extremely hard to solve this entire

system we restrict ourselves to a few more interesting results.

First we want to solve for the fraction of labor devoted to the production

of final goods, L(t). Remember that the social planner allocated a fraction

1�↵ of all labor to this sector. From (9.72) we have that L(t) = 1� A(t)x(t)
a

.
Dividing (9.71) by (9.70) yields

↵

1� ↵
=

A(t)x(t)p̃(t)

w(t)L(t)
=

A(t)x(t)

aL(t)(1� µ)

A(t)x(t)

a
=

↵(1� µ)L(t)

1� ↵

and hence

L(t) = 1� A(t)x(t)

a
= 1� ↵(1� µ)L(t)

1� ↵

L(t) =

1� ↵

1� ↵µ
> 1� ↵

Hence in the market equilibrium more workers work in the final goods sector

and less in the intermediate goods sector than socially optimal. The intuition
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for this is simple: since the intermediate goods sector is monopolistically

competitive, prices are higher than optimal (than social shadow prices) and

output is lower than optimal; di↵erently put, final goods producers substitute

away from expensive intermediate goods into labor. Obviously labor input in

the intermediate goods sector is lower than in the social optimum and hence

AME
(t)xME

(t) < ASP
(t)xSP

(t)

Again these relationships hold always, not just in the balanced growth path.

Now let’s focus on a balanced growth path where all variables grow at

constant, possibly di↵erent rate. Obviously, since L(t) = 1�↵
1�↵µ

we have that

gL = 0. From the labor market equilibrium gA = �gx. From constant markup

pricing we have gw = gp̃. From (9.75) we have gA = gX and from the resource

constraint (9.74) we have gA = gX = gc = gY . Then from (9.70) and (9.71)
we have that

gw = gY + gP
gp̃ = gY + gP

From the production function we find that

gY = ↵gx +
↵

1� µ
gA

=

↵µ

1� µ
gA

Hence a balanced growth path exists if and only if gY = 0 or ⌘ =

↵µ
1�µ

= 1.
The first case corresponds to the standard Solow or Cass-Koopmans model:

if ⌘ < 1 the model behaves as the neoclassical growth model with asymptotic

convergence to the no-growth steady state (unless there is exogenous techno-

logical progress). The case ⌘ = 1 delivers (as in the social planners problem)

a balanced growth path with sustained positive growth, whereas ⌘ > 1 yields

explosive growth (for the appropriate initial conditions).

Let’s assume ⌘ = 1 for the moment. Then gY = gA and hence

Y (t)
A(t) =

Y (0)
A0

=constant. The no entry-zero profit condition in the BGP can be written
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as, since p(⌧) = p(t)egp(⌧�t)
for all ⌧ � t

p(t)

b
= µ↵

Y (0)

A0

Z 1

t

p(t)gp(⌧�t)d⌧

1 = �bµ↵
Y (0)

A0gp

gp =

ṗ(t)

p(t)
= �

✓
bµ↵

Y (0)

A0

◆
< 0

Finally, from the consumption Euler equation

gc =
1

�

✓
bµ↵

Y (0)

A0
� ⇢

◆

But now note that

Y (0) = L(0)1�↵x(0)↵A(0)
↵

1�µ

= L(0)1�↵
(x(0)A(0))↵ A(0)

↵µ
1�µ

= L(0)1�↵
(x(0)A(0))↵ A(0)

under the assumption that ⌘ = 1. Hence, using (9.72)

Y (0)

A0
= L(0)1�↵

(x(0)A(0))↵

= L(0)1�↵
(a(1� L(0))↵

= L(0)a↵

=

1� ↵

1� ↵µ
aa

Therefore finally

gc = gY = gA =

1

�

✓
baaµ↵

1� ↵

1� ↵µ
� ⇢

◆

is the competitive equilibrium growth rate in the balanced growth path under

the assumption that ⌘ = 1. Comparing this to the growth rate that the social

planner would choose

�c(t) =
1

�

⇥
baa(1� ↵)1�↵↵↵ � ⇢

⇤
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We see that for µ↵  1 the social planner would choose a higher balanced

growth path growth rate than the market equilibrium BGP growth rate. The

market power of the intermediate goods producers leads to lower production

of intermediate goods and hence less resources for consumption and new

inventions, which drive growth in this model.

27

This completes our discussion of endogenous growth theory. The Romer-

type model discussed last can, appropriately interpreted, nest the standard

Solow-Cass-Koopmans type neoclassical growth models as well as the early

AK-type growth models. In addition it achieves to make the growth rate

of the economy truly endogenous: the economy grows because inventors of

new ideas consciously expend resources to develop new ideas and sell them

to intermediate producers that use them in the production of a new product.

27Note however that there is an e↵ect of market power in the opposite direction. Since
in the market equilibrium the intermediate goods producers make profits due to their
(competitive) monopoly position, and the ideas inventors can extract these profits by
selling new designs, due to the free entry condition, they have too big an incentive to
invent new intermediate goods, relative to the social optimum. For big µ and big ↵ this
may, in fact, lead to an ine�ciently high growth rate in the market equilibrium.
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